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TECHNICAL MEMORANDUM X-64832

MSFC SORTIE LAB ENVIRONMENTAL CONTROL SYSTEM (ECS)
PHASE B DESIGN STUDY RESULTS

SECTION 1. INTRODUCTION

The Sortie Lab (now named Spacelab) is a manned experiment module

that will fly as a payload for the Space Shuttle. It remains attached to the

Shuttle payload bay at all times during flight. The experimenters receive

habitation support for food, waste management and sleeping accommodations

in the Shuttle orbiter. Nominal mission duration is 7 days.

MSFC has conducted an in-house Phase B design study of the Sortie

Lab to provide system definition prior to initiation of detailed design and fab-

rication, either in Europe or within the United States. The purpose of the

report is to document the Environmental Control System (ECS) portion of the

Phase B study. The study assumed that the Sortie Lab was autonomous from

the Shuttle in regard to heat rejection and atmosphere revitalization. The

projected Sortie Lab crew size is either a maximum of 4 men in the Lab at

intervals or 3 men continuously.

The report confines itself primarily to the pressurized module. The

ECS for the unpressurized pallet for experiment mounting should consist

largely of heaters, insulation, and cold plates, which are very dependent upon

the final experiment configurations and requirements.
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SECTION II. ENVIRONMENTAL CONTROL SYSTEM (ECS)

The Sortie Lab ECS definition must consider a variety of design options
to satisfy the experiment requirements, interface with other Sortie Lab/Shuttle
subsystems, maintain a flexible design concept, and provide a low cost pro-
gram approach. Previous sortie mission studies, such as the RAM Phase B
and Sortie Lab Phase A, have provided good background data for satisfying
the ECS design goals. A factor which has influenced all of these studies for
the past two years is the lack of firm Shuttle interface design data. For this
reason, the best design approach for the payload ECS has been to remain as
independent of the Shuttle design as possible. This approach provides an
advantage to both programs by minimizing sensitivity of (a) Sortie Lab program
to Shuttle design changes and (b) impacting Shuttle designs with changing or
variable experiment requirements. The ECS trade studies which have been
conducted concerning Shuttle resource utilization are discussed in Section VI.

The basic ECS functions required in the lab are given below. A
summary of the design requirements for ECS definition are given in Tables 1,
2 and 3. A discussion of how these various design requirements are derived
is given in the respective functional design sections which follow.

Crew comfort requirements for the Sortie Lab were not based on aver-
age mission metabolic rate, 126 W (430 Btu/Hr), but on a daily expected
range of crew activity, 117 to 176 W (400 to 600 Btu/Hr). The comfort envel-
ope for this range of activity levels is given in Figure 1. The crew comfort
zone was defined employing minimal restraints on the crew activities by using
variable cabin air temperatures and various levels of clothing for the expected
metabolic ranges. Maintaining environments in the comfort envelope will allow
transient periods of work at much higher rates without discomfort. The range
of metabolic levels was chosen based on a minimum level of 117 W (400 Btu/Hr)
for an active (awake) crewman and an average maximum level of 176 W (600
Btu/Hr) for mission work which will require four or more hours. The comfort
zone is based on the fact that some parameters can be controlled without
compromising crew activity. Parameters such as metabolism and ventilation
levels are controlled only over a range of values (not selective control in this
range). The cabin mean radiant wall temperature can also be included in this
category. Other parameters such as crew clothing level and cabin air tem-
perature are assumed controlled by the crew to maintain confort.
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TABLE 1. BASELINE ECS DESIGN CRITERIA FOR SORTIE LAB

Mission Length (days)

(a) Nominal 7

(b) Extended Up to 30

Payload Crew for Sizing Consumables (77day

mission)

(a) Maximum (3 crewmen in lab

continuous, two shift operation) 42 Man-Days

(b) Nominal (4 crewmen, one shift

operation or 2 crewmen, two

shift operation) 28 Man-Days

(c) Minimum (2 crew, one shift

operation or 1 crewman, two

shift operation) 14 Man-Days

Payload Crew Distribution (number of crewmen

in the lab at the same time)

(a) Design point (nominal) 2

(b) Maximum 4

(c) Minimum 0

Pressurized Volumes, m 3 (ft3 )

(a) Standard module (maximum) 100. 1 (3535)

(b) Scientific airlock 2.4 (85)

Repressurization Requirements

(a) Standard module Once/Mission

(b) Scientific airlock 1/Day

Atmosphere Leakage, kg/day (lb/day)

Ambient pressure, 10. 1 N/cm2  1.36 (3)

(14.7 psia)

3



Cabin Atmosphere

(a) Total pressure, N/cm 2 (psia) 10.13 ± 0.14 (14.7 ± 0.2)

(b) Oxygen partial pressure, N/cm2

(psia) 2. 14 - 0. 07 (3. 1 0. 1)

(c) Diluent N 2
(d) Carbon Dioxide partial pressure Less than 7. 6 mm Hg

(e) H20 partial pressure

- Range 6-11 mm Hg
- Nominal 8-9 mm Hg

Metabolic Heat Generation, W/man

(BTU/hr-man) Sensible Latent Total

(a) Maximum design 115 (392) 61 (208) 176 (600)

(b) Nominal design 102 (350) 61 (208) 163 (558)

(c) Minimum design 88 (300) 29 (100) 117 (400)

O, Consumption, kg/man-day (lb/man-day)

(a) Nominal'design 0.84 (1.84)
(b) Range 0.77 to 1.0 (1.69 to

2.2)

CO, Production, kg/man-day (lb/man-day)

(a) Nominal design 1.00 (2.20)
(b) Range 0. 87 to 1. 22 (1. 92 to

2.68)

Water Requirements

(a) Ingested water, kg/man-day
(lb/man-day) Provided by Shuttle

(b) Experiments, kg/man-day (lb/day) TBD

Crew Waste Management

(a) Urine Provided by Shuttle
(b) Feces Provided by Shuttle
(c) Trash Provided by Shuttle

4



On-Orbit Total Heat Rejection for Radiator

Design, kW (BTU/hr)

(a) Maximum 8. 55 (29, 200)

(b) Nominal 3.99 (13,640)

(c) Minimum 2. 00 (6, 820)

On-Orbit Cabin Air Thermal Loads,

kW (BTU/hr)

(a) Maximum 2.93 (10,000)

(b) Nominal 1.76 (6,000)

(c) Minimum 0.73 (2,500)

Crew Comfort Requirements

(a) Designed for standing man

- Body surface area, convection,

m 2 (ft2 ) 1.81 (19.5)

- Body suface area, radiation,

m 2 (ft 2 ) 1.44 (15.5)

(b) Ventilation level over body,

m/min (ft/min) 6. 1 to 15. 2 (20 to 50)

(c) Available clothing variation (clo) 0. 35 to 1. 0

(d) Metabolic activity variation,

Watts (BTU/hr) 117 to 176 (400 to 600)

Cabin Wall Temperature, O C (o F)

(a) 1 Mean radiant 15.6 to 26.7 (60 to 80)

(b) Limit maximum surface temperature

that crew might contact 40. 6 (105)

Cabin Air Temperature, ° C (0 F)

(a) Selective range 18.3 to 29.4 (65 to 85)

(b) Nominal set point (design goal) 23.2 ± 1. 1 (74 ± 2)

1. In calculating man's radiant heat exchange with his environment, the mean

radiant wall temperature "seen" by the man must be used rather than the

average wall temperature. Mean radiant temperature is calculated as the

summation of the temperature of area surrounding the man multiplied by their

subtended solid angle from the man divided by the total solid angle.

5



TABLE 2. TYPICAL ON-ORBIT THERMAL LOADS FOR SORTIE LAB 2

Magnitude

Heat Source Watts BTU/hr

Experiments 293 - 5856 1000 - 20, 000

Subsystems 1757 - 2342 6000 - 8000

Fuel Cell Waste Heat 849 - 4392 2900 - 15, 000

Crew Metabolism 0 - 703 0 -- 2400

Heat Leak + 146.4 & 500

TOTAL 2928 -- 13,469 10,000 - 46,000

TABLE 3. ORBITAL ENVIRONMENT DESIGN CRITERIA

Orbital Heat Maximum Minimum

Flux Source (+ 3 g Deviation) Nominal (- 3 g Deviation)

Solar Constant, 1393 (442) 1352 (429) 1311 (416)
W/m 2 (BTU/hr-ft 2)

ALBEDO (%) 48 30 12

Earth IR, 299 (95) 236 (75) 173 (55)
W/m 2 (BTU/hr-ft 2)

2. Sources: (a) Sortie Lab Conceptual Design Study, PD-DO-72-2, March
1, 1972

(b) Research and Applications Module (RAM) Phase B Study,
Contract NAS8-27539, May 1972

(c) GSFC Space Shuttle Sortie Workshop, August 1972
(d) Sortie Lab Phase B Study, Task 4. 1, October 1972

6
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Figure 1. Crew comfort envelope.
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The Shuttle will provide the following facilities for the Sortie Lab
experimenters:

• Food Management

* Personal Hygiene (crew water and waste management)

* Sleeping Areas

* Launch and Reentry Provisions

In the following sections, a baseline ECS design is described and the
associated studies to arrive at this design are reviewed.

MAJOR FUNCTIONS FOR SORTIE LAB ENVIRONMENTAL
CONTROL SYSTEM

FLUID SUPPLY ATMOSPHERE
AND CONTROL CONDITIONING THERMAL CONTROL

* O 2/N 2 Storage * Circulation * Crew Comfort
and Supply

* Temperature * Structural Heat
* Cabin Pressure Control Leak

Control

* Humidity * Subsystem
* Airlock and Module Control Conditioning

Depressurization
and Repressurization * CO 2 Control * Experiment
Control Conditioning

* Contaminant
* Experiment Control * Heat Rejection

Requirements

* Particulate
* Water Management Control

* Cryogens

8



SECTION III. ENVIRONMENTAL CONTROL SYSTEM DESCRIPTION

The baseline ECS design that has evolved during the MSFC Phase B
study is primarily independent of Shuttle orbiter functions, except in the habita-
bility areas mentioned. It should be noted, however, that there is considerable
commonality in the design approaches. Both systems operate at 10. 1 N/cm 2

(14.7 psia) ambient pressure, shirt sleeve crew environments, water coolant
circuit in the pressurized areas, and a freon-21 coolant circuit in the unpres-
surized areas. The basic method of heat rejection on-orbit is via space
radiators. A block diagram is given in Figure 2.

The ECS is designed to support a crew which is equivalent to 21 man-
days for missions of 7 days. The ECS will perform the following functions:

1. Maintain cabin atmosphere temperature, pressure, humidity, and
composition within specified limits.

2. Provide cooling for experiment and subsystem equipment.

3. Collect and store water generated by fuel cells and condensate

removed from the cabin atmosphere.

4. Supply water, as required, for experiment use or heat rejection

purposes.

5. Reject waste heat to space through radiators or sublimator during
flight and to GSE during preflight operations.

The basic capabilities of the system, as baselined, are summarized
as follows:

* Provides for up to 7 kW air cooling in cabin

* Experiment cooling available = 4 to 5 kW. (All air cooled if required).

* Heat rejection via radiators = 8. 5 kW (orbital average)

* Total heat rejection using radiators plus sublimator = 10 to 11 kW
(orbital average)

* Normal cabin temperature = 23. 9 ± 1. 10C (74 ± 2-F)

9
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* Normal CO 2 levels = 3mm Hg

* Normal dew point temperature = 7. 2 ± 2. 80 C (45 ± 5°F)

* Cabin air flitration for 100 p airborne particles

* Eliminates all overboard dumping of water (fuel cell generated plus

condensate) for all payload sensitive missions.

Mechanical and electromechanical schematics are given in Figures 3

and 4. Figure 5 is an illustration of the internal cabin configuration, with

internal and external layouts given in Figures 6 through 7. A functional

description of the ECS block diagram (Fig. 2) is as follows:

The radiator coolant loop rejects to space all heat generated within the

lab cabin or by components located external to the lab cabin via the space

radiator. A thermal capacitor is provided in the radiator coolant loop as a

supplementary heat sink for transient conditions when the radiator is unable

to reject the prevailing system thermal load. The lab coolant loop removes

all heat generated within the lab cabin and rejects it to the radiator coolant

loop via an interface heat exchanger. A sublimator is provided in the lab

coolant loop as supplementary heat rejection for operating conditions when the

lab/radiator interface heat exchanger is unable to remove the entire cabin

heat load. The lab coolant loop receives heat inputs from three sources: the

cabin air revitalization system, the cabin ventilation system, and the equip-

ment ventilation system. The cabin air revitalization system removes CO 2

and moisture produced by crew activity plus some sensible loads. The cabin

ventilation system filters the cabin air, removes cabin air thermal loads, and

supplies conditioned air to the cabin via an air handling system. The cabin

ventilation system is the controlling agent of the cabin drybulb temperature.

The equipment ventilation system provides air circulation for the enclosed

equipment racks and removes heat produced by subsystems and experiments.

The two gas control system maintains the Sortie Lab total pressure and partial

oxygen pressure by adding 02 or N2 as required. The N 2 supply for the two-

gas controller is contained in high pressure bottles and the 02 supply is stored

under super critical conditions. The super critical 02 supply and an H 2 super

critical supply is used to store reactants for the 02/H 2 fuel cell. Product

water from the fuel cell is stored by the water management system for delivery

to the sublimator upon demand. A summary of the ECS weight/power alloca-

tions are given in Tables 4 and 5, respectively.

A detailed discussion of a contaminant removal system design is given

in Section V. It should be emphasized here, that to date, the Sortie Lab ECS

design has not decided upon an optimum design solution for contaminant con-

trol. A major concern is how to address the problem associated with treat-

ment of toxic gases emitted by commercial equipment.
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Figure 5. Internal cabin configuration.
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TABLE 4. ECS WEIGHT SUMMARY

Launch Weight

Ducting Dry Wet

Subsystem Components and Tubing (Subtotal) Fluids (Subtotal)

kg lb kg lb kg lb kg lb kg lb

Freon Coolant Loop 553.4 1,220 11.3 25 564.7 1,245 94.3 208 659 1,453

Lab Coolant Loop 103.9 229 5.4 12 109.3 241 34.0 75 143.3 316

Water Mgmt 121.6 268 2.3 5 123.8 273 40.8 90 164.7 363

Air Conditioning 64.4 142 115.2 254 179.6 396 119.3 263 298.9 659

Condensate Collect 20. 9 46 1.4 3 22. 2 49 1. 8 4 24.1 53

Nitrogen 88.4 195 3.2 7 91.6 202 29.9 66 121.5 268

Oxygen 11.3 25 1.8 4 13.2 29 18.6 41 31.7 70

Miscellaneous 129.7 286 4.1 9 133.8 295 3.2 7 137 302

Sidewall Insulation 249.5 550 249.5 550

Total 1,093.6 2,411 144.7 319 1,487.8 3,280 342 754 1,829.8 4,034



TABLE 5. ECS POWER ALLOCATION

Fluid Prime Mover Machinery*

CO 2/Humidity Fans (2) 88 Watts

Cabin Ventilation Fan 125

Experiment Equipment Cooling Fan 265

Cabin Water Coolant Pump** 110

Freon 21 Coolant Pump*** 200

788 Watts

Electromechanical Valves (Estimated Average for 24 Hr/Day at

28 VDC)

Cabin Temperature Control 50 Watts

Condensate Collection System 50

Atmosphere Controller (2-Gas System) 30

PPO2 Controller 30

160 Watts

Total Continuous Input Power 0. 948 KW

* Input power to motor only (inverters excluded).

** Skylab ATM ECS canister pump.

*** Space Shuttle Freon 21 pump spec. value.

The baseline ECS accommodations for experiments are discussed more

in Section IV. Throughout the design of the ECS, maximum use of Skylab hard-

ware has been made to minimize cost and development time. The baseline

designs are summarized as follows:
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A. Radiator Design

A deployed radiator, approximately 69.7 m2 (750 ft2), is the required
method of heat rejection for the non-deployed Sortie Lab concept. (The radia-
tor thermal coating is a white paint. ) The coolant in this circuit is freon-21
which is also the selected coolant for the Shuttle orbiter program. This loop
provides a closely controlled inlet temperature, 3.3 ± 1. 7oC (38 ± 3-F), at
the heat exchanger which interfaces with the cabin water coolant loop. Tem-
perature control is maintained by a temperature mixing valve which allows
bypass of warm fluid around a cold radiator for low thermal loads. Other
major items that are conditioned by the radiator loop are pallet cold plates,
02 heat exchangers, and fuel cell coolant. The pump package maintains the
system flow at 907. 2 kg/hr (2000 lb/hr). The thermal capacitor, which con-
tains a phase change material, Tmelt = 4.4 0 C (400F), is used to absorb heat

during transient periods when the space radiator performance is inadequate.
The ground cooling heat exchanger is used for cooling of the freon loop (radia-
tor bypassed) during ground operations. This allows prelaunch cooling of the
thermal capacitor and thermal conditioning of the lab, if required. In addition
to the thermal capacitor, a water sublimator has been baselined as a supple-
mental heat rejection method for radiator loads higher than average orbital
thermal loads of 8. 5 kw (29, 200 BTU/hr). The space processing payloads
normally require heat rejection in excess of the space radiator capacity.
Rather than over size a radiator for this payload, the use of the fuel cell
generated water for thermal control was selected. The total heat rejection
capability of the radiator plus sublimator is 10 to 11 kw (depending on the
total amount of water available for thermal control). This particular payload
is not sensitive to external contamination.

B. Structural Heat Leak

The total structural heat leak (gain or loss) to the pressurized module
has been minimized to free the thermal design from any orbital attitude con-
straints. In the preliminary design a total allowable heat leak of 146 w (500
BTU/hr) was assumed through Sortie Lab elements such as the tunnel, side-
walls, bulkheads, scientific airlock, and windows. High performance insula-
tion was used extensively to maintain these structural heat leak designs.
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C. Cabin Air Temperature Control

The cabin thermal control system removes heat from the interior of

the lab and rejects the heat to the radiator loop through the liquid-to-liquid

(freon/water) interface heat exchanger. The cabin coolant is water and is

circulated through the system at 227 kg/hr (500 lb/hr). The water flows

from the pump through the interface heat exchanger, sublimator, condensing

heat exchanger, cabin heat exchanger, equipment heat exchanger, and back to

the pump. The water is cooled in the interface heat exchanger and/or sublima-

tor to 4. 4 to 7. 20 C (40 to 45*F). Two condensing exchangers are connected in

parallel and remove moisture from the cabin atmosphere as required to main-

tain the desired cabin humidity. One condensing heat exchanger is required

for a crew of two. Both units are required for a crew of three to four. A fan

in each condensing heat exchanger circuit provides 1. 27 m3/min, (45 ft 3/min. )

air flow across the heat exchanger. For a nominal two-man crew, only one

fan is operating. For a four-man crew, both fans are operating. This design
concept has operating flexibility to accommodate variable crew sizes and pro-

vides the low humidity levels required for optimum cabin air temperature con-

trol. Condensate from the heat exchangers will be stored for the duration of

the 7-day mission. The maximum quantity of condensate to be stored is 56 kg

(124 pounds).

The cabin heat exchanger is located in the cabin ventilation ducting and

maintains the air temperature control for crew comfort. A total air flow of

15. 3 m 3/min (540 ft3/min) across the heat exchanger is provided by the cabin

heat exchanger fan. A modulating flow control valve controls coolant flow

through the cabin heat exchanger as required to maintain cabin air tempera-

ture at the set-point. The maximum heat removal capability of the cabin air

circuit for crew comfort is - 3 kW (10, 000 BTU/hr) at an ambient tempera-

ture of 23.3 ± 1. 10C (74 ± 20F). This includes the heat removal capacity of

the condensing heat exchangers. The allowed split in subsystem and experi-

ment thermal loads for this circuit are still to be determined.

Until better information is obtained, the following design approach has

been taken for thermal air conditioning of additional laboratory equipment. An

air distribution and thermal conditioning circuit specifically for equipment

racks (separate from the crew comfort circuit) will be designed for handling

up to N 4 kW (14, 000 BTU/hr) air cooling loads. The heat exchanger selected

for this circuit is the same type as the cabin heat exchanger. The maximum

air flow across the heat exchanger is 19. 8 m 3/min (700 ft 3/min). The air and

water coolant temperatures in this circuit are a function of cabin and rack

thermal loads The maximum return air temperature from the racks is
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40. 60C (105 0F). An illustration of the air distribution designs for both the
cabin and equipment circuits is given in Figure 5. The cabin circuit uses the
floor as a return duct, whereas, the equipment circuit has return ducts. No
attempt has been made to completely isolate the two compartments, however,
the baseline design does tend to isolate contaminants that might occur due to
off-gassing from electronic equipment (particularly odors).

D. CO2 Removal

The CO 2 removal system consists of three lithium hydroxide (LiOH)
canisters connected in parallel and integrated with the humidity control sys-
tem (Figure 8).

TO CABIN AIR DISTRIBUTION

-7
CH COOLANT

CH LIOH LIOH LIOH I x FLOW

] FAN
,FAN (45 CFM)

FLOW DIVERTER VALVE 
42m/min.

MANUAL SHUTOFF VALVE .9m m
3 /min(10 CFM) 5.1 m

3 /min. (55 CFM)

® CHECK VALVE

S FROM CABIN

Figure 8. Design concept for CO 2 removal/humidity control.

For a nominal two-man crew, only one fan is operating. This fan pro-
vides air flow through both the condensing heat exchanger 1. 27 m 3/min (45 ft3/
min) and the LiOH canister 0. 28 m 3/min (10 ft 3/min). For a four-man crew,
both fans are operating. Each condensing heat exchanger has 1. 27 m 3/min
(45 ft3/min) air flow and the total air flow through the LiOH canister is
0. 57 m3/min (20 ft 3/min). As each LiOH canister is expended, the crew
diverts the air flow to a fresh canister.
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E. Atmosphere Supply and Control

The atmosphere supply and control design maintains the pressurized

lab at 10. 14 N/cm2 (14.7 psia), supplies gaseous oxygen and nitrogen for

repressurization of the scientific airlock, supplies oxygen for metabolic

consumption. The design also includes vent and relief components which per-

mit the lab to be vented to the outside environment and prevent the lab struc-

ture.from being exposed to excessive internal or external pressure differen-

tials. A separate nitrogen gas supply is used for pressurization of the

accumulators in the coolant circuits andthe water storage tanks. The 7 day

mission atmosphere consumables carried by the lab ECS are 24. 5 kg (54

pounds) of oxygen and 23. 1 kg (51 pounds) of nitrogen. The breakdown of

of these consumables is discussed in Section V. The ECS oxygen require-

ments are integrated with the fuel cell cryogenic tankage and constitute a

5 to 10 percent increase above the oxygen reactant required for power genera-

tion.

The oxygen gas for ECS is supplied from the fuel cell cryogenic tank-

age at 621 N/cm2 (900 psia) and -184°C (-297SF). Through an interface with

the radiator loop the oxygen is heated to a minimum of -40 0 C (-40"F) and the

pressure is then reduced to 83 N/cm 2 (120 psia) by a pressure regulator.

Gaseous nitrogen is stored in a high pressure bottle, 2068 N/cm 2 (3000 psia).
Nitrogen gas pressure is reduced to 621 N/cm 2 (900 psia) prior to entering

the cabin and is further reduced to 110 N/cm2 (160 psia) by a pressure regu-

lator. Redundant pressure regulators are provided in both the oxygen and

nitrogen supply lines. The shutoff valve immediately upstream of the appro-

priate regulator is closed when a regulator failure is detected.

The major portion of the two gas control system consists of the pres-

sure sensors, controllers, the mechanical components used to control the

flow, and pressure of the oxygen and nitrogen. Normally, the system supplies

nitrogen to the cabin atmosphere as required to maintain the total pressure

in the lab at the desired leval. When the oxygen partial pressure sensing

system determines that the oxygen partial pressure is below the desired

value, the supply of nitrogen is stopped and oxygen is supplied to the cabin

as required to maintain the total pressure in the cabin at the desired level.

When the oxygen partial pressure reaches the desired value, the oxygen is

shut off and nitrogen is again supplied to the cabin. A source of reference

gas with associated control components is provided for inflight calibration of

the oxygen partial pressure sensors.
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F. Trace Gas Contaminant Control

A study of the potential trace gases in Sortie Lab and appropriate
control methods was begun during phase B studies but has not developed to
the point where trace gas removal systems can be incorporated into a phase
B schematic. Additional studies and testing to determine the magnitude of the
trace contaminant problem will be required before this can be done.

Current information indicates that the generation of trace contaminants
can be a problem for Sortie Lab (depending on assumed generation rates and
mission duration). Also, the Sortie Lab contaminants could in turn contami-
nate the Shuttle orbiter cabin if the two atmospheres are exchanged. This is
due to the different design philosophies of integrating equipment into the
respective cabin design. In Shuttle, the Skylab type materials control pro-
gram is applied to all equipment located in the crew compartment. The
Shuttle avionic bays are located outside of the Shuttle cabin area and are
designed to incorporate all equipment not compatible with the Skylab type
materials control. The bays are designed to leak overboard at a controlled
rate and are maintained at a constant pressure differential, 0. 28 N/cm 2

(0. 4 psid) below the cabin pressure to preclude avionics generated trace
contaminants from migrating into the Shuttle cabin. Sortie Lab currently has
no such provision for controlled overboard leakage of equipment racks and as
a consequence heating expansion and cooling contraction of air circulating
inside the racks will cause pumping of air between equipment racks and
Sortie Lab cabin through any available leak point. This could allow any con-
taminants generated internal to the racks to contaminate the Sortie Lab cabin.
Reliable pressure sealing of the racks to prevent air exchanges and the
required materials control necessary to eliminate a contaminant source with-
in the rack is probably unacceptable to many experiments payloads. This
makes some form of contaminant control necessary for Sortie Lab.

Preliminary analyses of Sortie Lab contaminant control concepts show
a catalytic oxidizer system could control 64 out of 74 contaminants within safe
levels with water adsorption and/or chemical adsorption to control the remain-
ing 10 contaminants. Water adsorption will occur within the condensing heat
exchangers during normal condensate removal operations. Chemical adsorp-
tion could be conducted with lithium hydroxide and copper sulfate layers
incorporated into the Sortie Lab particulate filters. The reality of these
proposed control methods can be verified only by additional studies and testing.
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SECTION IV. THERMAL CONTROL DESIGNS

A. Radiator Designs

The primary method of on-orbit heat rejection for the Sortie Lab is

with a thermal control coolant flowing through a space radiator. The radiator

design is based on the estimated thermal loads, required coolant temperatures,

and available surface area. The preliminary design values for maximum,

nominal, minimum thermal loads were based on the defined experiment

requirements (study task 4.1.3)3 and previous sortie studies (see Table 2).
Although higher average orbital thermal loads could be conceived it was

decided to determine the radiator requirements for dissipating a maximum of

8. 5 kilowatts (29, 200 BTU/hr), nominal of 4 kilowatts (13, 640 BTU/hr), and

a minimum of 2 kilowatts (6820 BTU/hr).

Three Sortie Lab operational concepts were investigated in the design

of a radiator heat rejection system:

DEPLOYED PAYLOAD .

NON-DEPLOYED PAY LOAD/
DEPLOYED RADIATOR

NON-DEPLOYED PAYLOAD/
RADIATOR

3. Experiment Payload Definition Study for Marshall Space Flight Center's

Phase B Sortie Lab. PD-MP, June 1972.

25



TABLE 6. CONSTANT DESIGN PARAMETERS UTILIZED FOR SIZING

RADIATOR SURFACE AREA REQUIREMENTS

Parameter Constant Parameter Assumptions for Study

Mission Circular earth orbit, 444. 5 km (240
nautical miles)

Radiator Coating White paint, as/E = 0. 25/0. 92

Heat Sources 3o- hot orbital heat fluxes plus internal heat

generation input to radiator coolant

Shuttle Orientation Y-POP, Z-LV

Beta Angle (9) 0 deg, 90 deg

Radiator Coolant Freon-21

Required Outlet Coolant 4. 4C (40°F)
Temperature

To compare the three conceptual radiator designs, some constant

design assumptions were utilized in the orbital heating analysis (Table 6).

The radiator flow distribution is illustrated in Figure 9 for the three concepts

being compared. The designs are based on minimum pressure losses and

maximum heat transfer. The deployed module has a circumferential radiator

integral with a meteoroid shield located along the length of the module. The

deployed radiator has two panels. Each panel is a 120 deg arc segment

described with a 2. 1-m (7-ft) radius. The non-deployed radiator has basically
the same geometry as the deployed radiator but remains attached to the non-
deployed lab.

Utilizing maximum orbital heating conditions and requiring a maximum

(average orbital) radiator outlet coolant temperature of 4. 4°C (40'F), the
required radiator size for each concept was estimated (Figure 10). To reject
a maximum of 8. 5 kilowatts heat load through the radiator, the deployed pay-
load radiator length must be 5. 6 m (18. 5 ft) and the deployed radiator length
must be 6. 9 m (22. 5 ft). The undeployed radiator concept cannot provide
adequate coolant temperatures for cabin thermal conditioning under the maxi-
mum design loads due to severe orbital heating environments. For example,
a radiator length of 7.6 m (25 ft) cannot provide a 4.4 0C (400F) outlet coolant
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DEPLOYED MODULE

-4 RADIATOR PANELS IN PARALLEL
-15 PARALLEL COOLANT TUBES PER PANEL
-340 kg/hr(750 Ib/hr) COOLANT FLOW PER PANEL
-TOTAL COOLANT FLOW = 1361 kg/hr(3000 Ib/hr) 4.40 C(400 F)

REQUIRED
OUTLET

DEPLOYED RADIATOR

- 2 RADIATOR PANELS IN PARALLEL
- 20 PARALLEL COOLANT TUBES PER PANEL
- 454 kg/hr (1000 Ib/hr) COOLANT FLOW PER PANEL
- TOTAL COOLANT FLOW = 907 kg/hr (2000 Ib/hr)

NON-DEPLOYED RADIATOR -

- 1 RADIATOR PANEL E7
- 20 PARALLEL COOLANT TUBES
- TOTAL COOLANT FLOW - 454 kg/hr (1000 Ib/hr)

Figure 9. Radiator coolant flow distribution.
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8.5 kW DESIGN REQUIREMENT

NOTE: OUTLET COOLANT TEMP. = 4.40 C (400F)
S3= 90 deg

2 SOLAR ORBIT = 100%
0

S 5
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o to

I

0 B If I

0 1.5 3.0 4.6 6.1 7.6
(5) (10) (15) (20) (25)

REQUIRED RADIATOR LENGTH, m(ft)

65.6
(150)

NOTE: NONDEPLOYED RADIATOR
LENGTH = 7.6 m (25 ft)

90

o 37.8 -

I-
I- "

0 4e
ael

0

0 10.0-
- (50)

I

(50) REQUIRED 4.4 C (40'F)

I-I

-18
(0 IIIIIII

(0) 0 2 4 6 8 10

RADIATOR HEAT REJECTION (kW)

Figure 10. Radiator size versus heat rejection required.
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65.6
(150) NOTE: RADIATOR LENGTH = 7.6 m (25 ft)

3= 90 deg

05 WHITE PAINTU-*

S37.8 - *O

S(100) 0 * o SILVER/TEFLON

- 10.0-

-1 (50)
" -• REQUIRED 4.40C (400F)I -
o

(0) 0 2 4 6 8 10

RADIATOR HEAT REJECTION (kW)

Figure 11. Non-deployed radiator performance utilizing an

advanced thermal coating.

for high inclination orbits (P = 90 deg) and can provide a heat rejection of

only 1. 5 kW for low inclination orbits (P = 0 deg). For a Z-POP shuttle attitude

(solar interial), little difference exists in the radiator lengths required for

concepts 1 and 2 but the non-deployed concept could not reject the 1. 5 kW men-

tioned above for even the low inclination orbits.

To further improve the potential of non-deployed radiator design, an

advanced thermal coating was investigated. A new material, silver coated

teflon, with an a /E = 0. 08/0. 80, was compared to the white paint (Figure
s

11). The new optics produced little improvement for the earth-oriented

missions. The non-deployed radiator concept proved to be unacceptable from

a thermal control standpoint because insufficient surface area is available for

heat rejection.

As a result of these studies the deployed radiator concept was selected

as a design reference model for Sortie Lab heat rejection studies because it

satisfies mission requirements, minimizes deployment interfaces with the

Shuttle and offers design flexibility for changing requirements.
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Several trade studies on the deployed radiator concept were made to
further optimize its design.

The inpact on radiator size of moving the Sortie Lab to various loca-

tions in the Shuttle bay was investigated (Figure 12). The initial design

reference model assumed the radiator is deployed from the forward bulkhead

of the Sortie Lab and that the lab is located next to the Shuttle cockpit area.

Translation of the lab to the rear of the payload of the payload bay area is

required to satisfy most of the Sortie Lab/Shuttle C. G. constraints. For

this case the deployed radiator view to space decreases and a corresponding

increase in radiator size is required to reject the 8. 5 kw thermal load. If

the deployed radiator is translated 12. 2 m (40 ft) aft, the radiator length
must be increased 0. 46 m (1. 5 ft).

An assessment was made of potential Shuttle thermal coating varia-

tions. The basic thermal coating planned for the external skin surfaces of
the orbiter will have an a /E = 1. 0. This design minimizes refurbishment

requirements after each flight. Since the specific a s and E values are

being investigated by Johnson Space Center (JSC), two coatings were assumed

to assess potential impacts on the deployed radiator design (Figure 13). The

a /E = 0. 35/0. 35 is a coating which will reflect solar and planetary heat

fluxes more than a coating of a /E = 0. 90/0. 90. For both cases that were

analyzed, the shuttle radiators and Sortie Lab thermal coatings were held con-

stant at o1 /E = 0. 25/0. 92. Results of the cases that were investigated show

that Shuttle coating variations have little effect on Sortie Lab deployed radiator

temperatures.

Another study was conducted to estimate the reduction in deployed

radiator length by having a combination of fixed radiator and deployed radiator

for the lab (Figure 14). For the one orbital case that was examined, the

results indicate that for a 4. 6-m (15-ft) long non-deployed radiator, a 5. 8-m

(19-ft) long deployed radiator is required to obtain the 4.4°C (40'F) outlet

coolant. For a 7. 6-m (25-ft) long non-deployed radiator, the deployed
radiator is 5. 3-m (17. 5-ft) long. Since no weight savings is envisioned for

this configuration and more complexity is involved the combination configura-
tion was discarded.

The option of having variable size deployable radiator has both advan-
tages and disadvantages over a fixed deployable radiator configuration and
should be examined further. For the present, a fixed size radiator, roughly
7. 3 to 7. 9 m (24 to 26 ft) in length, is assumed flown on every Sortie Lab
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Figure 12. Deployed radiator requirements versus module location in bay area.
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Figure 13. Thermal coatings for Shuttle/Sortie Lab trade studies.



ASSUMPTIONS:

S90 dog.

Y-POP, Z-LV ORIENTATION
3 a HEATING
8.5 KW HEAT REJECTION

TYPICAL CONFIGURATION

T T2  ---- T

4.4 0C(40oF)
_-OUTLET

N -O- REQUIRED

NON-DEPLOYED RADIATOR

DEPLOYED RADIATOR

COOLANT FLOW - 907 kg/hr (2000 Ib/hr) 454 kg/hr (1000 Ib/hr) PER PANEL

NUMBER OF TUBES - 40 20 PER PANEL

37.8(100)- (100)

o

T3
4.4(40)- (40) _

0 I I
o I I

-18 10 I I I I I

0 (5) (10) (16) (20) (25) (301 0 (15) (30)
O 1.52 3.06 4.57 6.1 7.62 9.14 4.57 9.14

NON-DEPLOYED RADIATOR LENGTH m(ft) DEPLOYED RADIATOR LENGTH m(ft)

Figure 14. Combination of fixed radiator and deployed radiator
surface area requirements.

33



pressurized module mission. The structural configuration is illustrated in
Figure 15. A typical interaction of the fixed configuration radiator (prior to
deployment) with a variable size pressure module is illustrated in Figure 16
and shows that the mounting attachments of the radiator with the pressurized

module need to be assessed. The identified payloads are taken from the
4. 1. 3 study task. 4

Three experiment disciplines were selected from the 4. 1.34 payloads

to evaluate the transient heat rejection capabilities of the deployable radiator

concept. The payload disciplines investigated were Communication Naviga-

tion (C/N), Materials Science (MS-1, MS-2, MS-3, MS-4) and Earth

Observations (EO-2). The thermal loads associated with each discipline

were derived from the experiment operation timelines documented in Task

4.1.2.4. 15 and are depicted in Figures 17 through 19 for a typical 20 hour

mission segment. In addition to the experiment power requirements, the

radiator thermal loads include a constant 2 kW subsystem power, crew meta-

bolic loads, and fuel cell waste heat created by power generation. The data
used for determining fuel cell waste heat is given in Figure 20.

The present baseline requirements are for the radiator to reject a maxi-

mum of 8. 5 kW (29,200 BTU/Hr) and satisfy the cabin condition requirements

for crew comfort and equipment conditioning. A maximum radiator outlet

temperature of 4. 40 C (40 0 F) is required for cabin thermal conditioning. For

those periods of time when this temperature is exceeded a supplemental heat

rejection system is required or the radiator size is increased. If the average

is greater than 4.4°C (40 0F), then an expendable heat sink (such as a water

sublimator) is required or the radiator size increased. The radiator perform-

ance for each experiment discipline investigated is discussed separately. All

studies consider "worst heating" orbital environments (30 hot). For the cases

examined, no radiator bypass was simulated although this is the primary means

of maintaining a 4.4°C (40 0 F) coolant temperature. Therefore, when thermal

loads are lower than 8. 5 kW the radiator outlet temperature is shown to be

less than 4. 40C (40°F). If radiator bypass were simulated for the transient

thermal loads, the radiator structure would be colder and have more thermal

capacity to maintain a 4.4°C (400F) outlet temperature during high thermal

load periods. Hence, these analyses are conservative in their design results.

4. Experiments Payload Definition Study for Marshall Space Flight Center's

Phase B Sortie Lab. PD-MP, June 1972.
5. Experiments Operations Timeline. S& E-AERO-MX-30-72, September

14, 1972.
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Figure 15. Structural configuration of deployable radiator.
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Figure 16. Modular Sortie Lab concept with deployable radiator attached to the subsystems
module and pallet attached to experiment module.
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Figure 17. Communication/navigation thermal loads for designing heat rejection systems.
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Figure 18. Materials science thermal loads for designing heat rejection systems.
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1. Communication/Navigation Payload. This experiment discipline is

associated with a high and low 0 angles. Therefore, the heat load profile

shown in Figure 17 was imposed on the radiator for both maximum shadow

(p = 0 deg) and 100 percent sun (P = 90 deg) conditions. To establish initial

steadystate conditions of the radiator, a 5-hour constant heat load 7. 5 kW

(25, 546 BTU/Hr), is imposed prior to the experiment timelining. The

results for p = 0 deg and P = 90 deg, with a Shuttle attitude of Y-POP, +Z-LV,

are given in Figures 21 and 22.

The average heat load conditions are probably more representative of

radiator performance than the highly transient loads because the thermal loads

do not consider thermal lags or dampening characteristics of the heat dissipating

circuits. The baseline radiator design satisfies the heat rejection require-

ments for the majority of the mission. A thermal capacitor could be designed

to eliminate those periods of time when the radiator outlet temperature

exceeds 4. 4C (40°F). It should be noted for the P = 90 deg orbit, that the

radiator orbital environment is essentially constant and the transient equip-

ment heat loads size the thermal capacitor. For the P = 0 deg orbit, the

variation in orbital environments is evident during the 95 to 100 hour mission.

This variation coupled with transient equipment heat loads will have to be con-

sidered in the final definition of a thermal capacitor size.

2. Material Science Payload. The materials science payload had the

highest average radiator load examined, 9.4 kW (32,075 BTU/Hr). The time-

line analysis of Task 4. 1. 2.4. 16 assumed all material science experiments

(MS-1, MS-2, MS-3, MS-4) were performed in one 7-day mission. Only a

p = 0 deg case was considered. The predicted radiator performance is given

in Figure 23. The results are similar to the communication/navigation pay-

load. The radiator supplemental heat removal could be either a thermal

capacitor or an expendable heat sink such as water sublimation. The results

show that for low beta angle missions the radiator actually has more capacity

than the 8. 5 kW (29, 200 BTU/hr) design requirements. Hence, with the use

of supplemental heat rejection the total rejection of the lab could be increased

up to 10-11 kW maximum for the material science mission. This assumes

fuel cell generated water is available for use in a water sublimator design.

3. Earth Observation Payload. The earth observation payload (EO-2)

had the lowest average radiator load investigated 5 kW (17,057 BTY/hr). All

earth observation payloads were for P angles less than 100 percent sun.

Little difference in orbital heating is expected for 1 = ± 52 deg for the Y-POP,

Z-LV orientation. Therefore, P = 0 deg was used to evaluate radiator per-

6. Experiment Operations Timeline. S& E-AERO-MX-30-72, September 14,

1972.
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formance. The average orbital radiator outlet temperature is lower than

4.4 0 C (40 0F) throughout the mission (Figure 24). This indicates the radiator

could probably satisfy the thermal control requirement without any supple-
mental heat removal even though small peaks are shown above 4.4 0 C (400F).

In summary, the three experiment payloads selected from the 4. 1. 3

study represented the highest thermal loads for a radiator design. A major

assumption in these analyses is the 2 kW continuous subsystem power require-

ments. Since these analyses were made, a review of subsystem power allo-

cations indicate 3-4 kW is required. The elimination of fuel cell waste heat

(for shuttle provided power) combined with this subsystem power increases

makes the radiator results still valid. Based on the above analyses, the

deployed radiator is capable of rejecting an average thermal load of 8. 5 kW

without the use of expendable heat sinks (such as water sublimator) but could

require a thermal capacitor for peak loads (> 8. 5 kW) that occar longer than

30 minutes per orbit. Studies on optimum designs for a thermal capacitor

and valve for radiator by-pass are required. Other trade studies that should

be performed on the deployed radiator that can impact the weight, length and

cost are: (a) use of a silver/coated teflon thermal coating, (b) design for

nominal heating environments rather than 30 , (c) single panel deployed
radiator rather than a double-sided configuration, and (d) coolant flow

distribution variations.

4. Radiator By-Pass Valve. A vernatherm (wax controlled) type of

valve has been designated to be the radiator by-pass valve for the baseline

configuration. However, one of the problems experienced during the Skylab

mission was that a similar type of valve malfunctioned. This type of valve is

highly sensitive to particulate contamination. Therefore, a further study is
recommended to examine possible use of a bank of solenoid valves controlling
the coolant flow in a step-wise modulation. This concept would be similar to
the one that was baselined for the cabin air temperature control. (Section
IV-D)

5. Radiator/Cabin Interface Heat Exchanger. The liquid/liquid heat
exchanger that interfaces the radiator freon loop with the cabin water loop was
investigated to determine its physical size. The parameters that influence the
heat exchanger design are coolant flow rates, required inlet/outlet coolant
temperatures, and thermal load. The heat exchanger effectiveness was cal-

culated assuming a cross flow, plate-fin, compact heat exchanger design. To
reject large thermal loads (7 to 8. 5 kW), with a 3°C (5°F) temperature differ-

ences between the inlet freon temperature and the outlet water temperature,
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will require a large, heavy interface heat exchanger unless the radiator coolant

flow is increased (Figure 25). Also, the heat exchanger material (aluminum

versus stainless steel) will affect the total weight of this unit. Preliminary
radiator studies indicate increasing the total radiator coolant flow to 1361 kg/hr
(3000 lb/hr) results in a net weight savings, 68 kg /150 lbs), for thermal con-

trol. Therefore, future studies should consider a higher flow rate than 907

kg/hr (2000 lb/hr) in the external (freon) coolant.

454
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= 227 kg/hr (500 Ib/hr)

2. WATER OUTLET TEMP. = 70 C (450 F)
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Figure 25. Radiator/cabin interface heat exchanger design.
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B. Supplemental Heat Rejection

Supplemental heat rejection beyond what the radiator can provide has
been identified in the form of a water sublimator and a thermal capacitor.
The following is a rationale for their use in the Sortie Lab:

1. Water Sublimator. The sublimator selected for Sortie Lab was the
Saturn Instrument Unit (IU) sublimator. The sublimator would be used on-
orbit only and would utilize water from the fuel cells to reject heat loads above
the capability of the space radiator (8. 5 kW). The sublimator is located in
the water loop because the water loop would be closest to the original design
conditions of the sublimator which sublimed water and cooled a working fluid
of methanol-water. The Sortie Lab sublimator will sublime water and cool
water in the cabin loop. In addition, by placing the sublimator in the water
loop, the water can be cooled directly to the most desirable temperature,
40C (400F). A comparison of the Sortie Lab and IU applications is shown in
Table 7 and the IU sublimator configuration is shown in Figure 26.

2. Thermal Capacitor. The thermal capacitor is located downstream
of the deployable radiator. Its purpose is to damp out orbital transients and
to remove short duration temperature excursions from the outlet temperature
of the radiator.

The tentative design is once again taken from an existing design, in
this case the Skylab capacitor, in regard to flow design (Figure 27). The
proposed capacitor is a larger capacitor than the Skylab design, however.
The baseline system consists of 45 kg (100 lb) of Tetradecane wax. Total
capacity of the capacitor is 2. 9 kW (10, 000 BTU).

The heat stored by the capacitor will be rejected during the cold por-
tion of the orbit. The capacitor also offers a heat storage capacity for periods
when the radiator is undeployed and the cargo bay doors closed.

C. Structural Heat Leak Studies
In order to initiate the Sortie Lab investigations, a total allowable

external heat leak or gain of 146 W (500 BTU/hr) was assumed. Minimizing
the external heat leak tends to free the vehicle from orbital and attitude con-
straints. Based on this assumption, various elements of the Sortie Lab have
been analyzed and these elements are: Lab sidewall including stiffeners,
flexible tunnel, and scientific airlock. The lab end bulkheads have been
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TABLE 7. INSTRUMENT UNIT SUBLIMATOR OPERATING CONDITIONS

Saturn Sortie Lab

60% Methanol

Coolant Loop Fluid 40% Water Water Freon 21

Coolant Flow Rate 3538 kg/hr (7800 lb/hr) 227 kg/hr (500 lb/hr) 907 kg/hr (2000 lb/hr)

Coolant Temp In 18C (64oF) 37 0 C (980F) 37 0 C (98°F)

Coolant Temp Out 15 0C (59 0F) 4°C (40oF) 40 C (400 F)

Heat Load 8. 8 kW (30000 BTU/hr) 8. 8 kW (30000 BTU/hr) 8. 8 kW (30000 BTU/hr)

Evaporant Water Water Water
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assumed to be insulated with the same thickness of high performance insulation
as the sidewall, but concepts of laying up the insulation over the curved end
bulkheads have not been analyzed. Insulation penetrations, which act as heat
shorts, have not been investigated. Typical insulation penetrations are Lab/
Orbiter mounting structure, radiator mounting structure, viewports or windows.
The discussions of the analyses are presented below.

1. Sidewall. Experimental data was obtained for "as installed" thermal
conductivity (k) of high performance insulation from the ATM and other pro-
grams. A k of 3. 5 x 10 - 4 W/m-oC (2 x 10 - 4 BTU/hr-ft-'F) was selected for
sizing the insulation thickness. In order to maintain a reserve for heat leak
through as yet undefined penetrations, a sidewall heat leak of 51 W ( 175
BTU/hr) was budgeted. This required 21/4 in. of high performance insulation.
This first insulation concept selected was double aluminized mylar/dacron net
which proved to be too heavy, p = 72 kg/m 3 (4. 5 Lb/Ft3 ), and was discarded
in favor of crinkled aluminized mylar, p = 14 kg/m 3 (1. 5 Lb/Ft3 ).

External stiffening rings are required for structural reasons on the lab
sidewall. The originally proposed insulation concept is shown on Figure 28.
The stiffening ring represents a direct heat short in this case. Therefore, an
insulation blanket was proposed to cover the stiffening as shown on Figure 28.
The blanket consists of 1.9 cm (0.75 in. ) of high performance insulation.
Fiberglass pins were added to the insulation as attach points, 16 deg apart
circumferentially and 61 cm (2 ft) apart longitudinally. The results of the
analysis are shown in Figure 28. Note that the internal wall temperatures
adjacent to the stiffeners, for the original design, fall below freezing, thus
allowing frost formation and condensation of moisture from cabin atmosphere
to form on the wall. Therefore, the original concept is considered unaccept-
able and the second concept recommended. Note that the total heat leak is
estimated to be no more than 5. 9 W (20 BTU/hr). Temperature differences
between the wall and cabin gas are predicted to be less than 0. 60C (10F) for
the second case.

2. Flexible Tunnel Heat Leak. A flexible tunnel has been proposed to
connect the orbiter and the Sortie Lab. Flexibility is needed if the Lab is ever
deployed out of the payload bay. In the event of non-deployment, a rigid tunnel
will suffice. Goodyear Aerospace Company has designed a flexible tunnel
under MSFC contract. The proposed tunnel design was analyzed to evaluate
the heat leak effects and potential problems with condensation or ice formation
on the internal tunnel walls. Also, the heat leak studies would help size the
heater power required to maintain acceptable internal wall temperatures.
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The tunnel has been analyzed for various thermal control schemes.
The initial part of the study consisted of evaluation of the Goodyear proposed
concept with additional thicknesses of foam insulation with and without ventila-
tion of air through the tunnel. The basic concept is shown in Figure 29.
Finally the tunnel was analyzed with various thicknesses of superinsulation,
keff = 8. 6 x 10- 6 W/cm-'C (5 x 10- 4 BTU/hr-ft 2- * F), applied on top of the

basic tunnel material. The study was done on the basis of a 3m (10 ft) tunnel
segment, thus for a 6 m (20 ft) tunnel, for example, the heat leak would be
doubled.

Figure 30 shows the conditions for the present design (1 cm of foam)
and additional foam thicknesses with no air movement through the tunnel. For
Y-POP vehicle orientations the internal wall temperatures are so low that
freezing of cabin water vapor will occur. With these low wall temperatures
the heat leak for the 3 m (10 ft) segment is 73 to 88 W (250 to 300 BTU/hr).
The design goal for the total Sortie Lab heat leak is 293 W (1000 BTU/hr).
Conditions for the same tunnel wall design with air movement in the tunnel,
~ 6 m/min (- 20 ft/min), are shown on Figure 31. In this case ice does not
form on the wall but condensation is likely to occur, for Y-POP. However,
heat leak is very high for this case and for the current 1-cm design, the heat
leak for a single 10-ft segment would be greater than the design goal for the
entire Sortie Lab. For these reasons, additional thermal protection in the
form of a superinsulation blanket on top of the basic tunnel wall is required.
As shown on Figure 32, it was found that a 1. 27 cm (0. 50 in) insulation
blanket would prevent ice or condensation formation, with air ventilation
through the tunnel. The heat leak for 1. 27 cm (0. 50 in) of insulation is rather
high, close to 59 W (200 BTU/hr), 2. 54 cm (1. 00 in) of superinsulation would
cut this to 29 W (100 BTU/hr) which is considered acceptable for a 3-m
(10-ft) segment. Based on these considerations, 2. 54 cm (1. 00 in) of super-
insulation is recommended for the Sortie Lab tunnel. The insulation material
should be the same as whatever is finally used on the Sortie Lab.

The case of superinsulated tunnel with stagnant internal air is not
presented herein. For a mission in which the tunnel saw deep space continu-
ously, the tunnel interior would eventually become very cold. It is anticipated
that wall heaters would be applied to keep the wall from falling below the con-
densation temperatures. This condition is still being investigated and results
will be documented as soon as available.

3. Scientific Airlock. A scientific airlock is a potential element of the
Sortie Lab experiment module. Since the airlock may be pointed at deep space
as well as the sun, temperature variations can be extreme. The airlock has
been analyzed to determine heat loss/gain and expected temperatures.
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Figure 29. Sortie Lab flexible tunnel design concepts.
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Figure 30. Flexible tunnel temperatures and heat leak with no
ventilation in tunnel and no superinsulation.
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Figure 31. Flexible tunnel temperatures and heat leak with

ventilation in tunnel and no superinsulation.
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Figure 32. Flexible tunnel temperatures and heat leak with ventilation
in tunnel and with superinsulation
(foam bumper thickness = 1 cm).
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Foam insulation was investigated as a means of controlling temperature

and heat leak. In addition coatings (white or black paints) and several airlock

orientations relative to the sun (Figure 33) were studied. In all cases, for

foam thickness of up to 6. 35 cm (2. 50 in) the heat loss/gain was found to

range from 117 W (400 BTU/hr) to values in excess of 293 W (1000 BTU/hr).

An insulation blanket of 2. 54 cm (1. 00 in) of high performance insulation was

recommended for the airlock.

Quite a bit of additional effort is required on the thermal definition of

the Scientific Airlock. The proposed high performance insulation must be

exposed to a hard vacuum in order to be effective. The insulation must be

mounted so that it is not damaged by the installation and removal of experi-

ment equipment. Therefore, a mounting arrangement and a method of venting

the insulation to space must be obtained.

Experiments mounted in the airlock and viewing deep space will become

very cold. If exposed to the cabin atmosphere immediately after completion

of the experiment, frost or condensate can form on the experiment equipment.

Therefore, some sort of conditioning system must be developed for airlock

experiments.

D. Air Temperature Control/Distribution

1. Air Conditioning Concept Selection. Ten potential air conditioning

concepts have been identified for the Sortie Lab. The air conditioning system

has the task of removing 2. 9 kW (10, 000 BTU/hr) of sensible heat from the

cabin and 4 kW (14000 BTU/hr) from air cooled thermal racks for electronic

equipment. All of the concepts can be made to work by adjusting air or water

flow or both. Desired temperatures were 24'C (76oF) maximum for the cabin

and 41'C (1050F) for electronics equipment. The results of the comparative

study are shown on Table 8. A critique of each concept is given on Table 9.

Each concept is shown schematically in Figure 34. Concept 1 (Phase B

Baseline) satisfies the maximum temperature requirements with fairly low

flow requirements, however, this system brings in cold air 150 C (590F) into

the cabin creating a possible drafty condition. Concept 6 exceeds the cabin

specification by 0. 6C (1oF) but requires less air flow than concept 1 and

provides air to the cabin at 20 0 C (680F) which should minimize draft problems.

This concept is considered viable for these reasons and because the one degree

above the cabin limit occurs only during maximum power conditions. Concept

7 also meets requirements, in addition, it produces low temperatures in

thermal racks which may simplify equipment layouts etc. This concept does

require somewhat higher water flow, which could impact the interface heat
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NO INCIDENT SOLAR VECTOR 130 deg

THERMAL RADIATION SOLAR VECTOR
SOLAR VECTOR

S 1.2 m (48 in.)

CASE I CASE II CASE III CASE IV

Figure 33. Description of cases considered for scientific airlock heat leak.



TABLE 8 OPRSNOTABLE 8. COMPARISON OF TCABIN (TC) AND TTHERMAL RACK (TTR) FOR SORTIE LAB

AIR CONDITIONING/VENTILATION CONCEPTS

FOLDOUT FitAIVIL

Concep umber

M H2 O 1 2 3 4 5 6 7 8 10

WHXA/WHXB TC TTR TC TTR TC TTR TC TTR TC TTR C TR C TR TC TR TC TR T TR

kg/hr lbm/hr oC oF oC oF oC oF oC oF oC oF oC oF C oF oC oF C oF oC F C  F C F CC____°_°_°___FC[ F C 
0 F ' 

0C F F C C° 0F 0 C 0C °FF [C°FF 
0C °FF 

0 C 0 F 0 C 0 F

im /min/mi/inin (ft'/min)/(ft /min)

226.8 500 28.9 84.1 35.2 95.3 35.2 95.3 32.7 90.8 37.4 99.4 32.4 90.4 5.0 77.0 37.4 99.4 30.6 87.0 36.8 98.2 26.0 78.8 38.6 101.5

15.3/15.3 540/540

226.8 500- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -

226.8 500 19.9 67.8 38.9 102.1 35.4 95.8 30.9 87.7 25.8 78.4 45.9 114.7 27.1 80.7 39.7 98.1

15.3/19.8 540/700

226.8 500 19.9 67.8 33.7 92.7
15.3/38.1 540/1346

226.8 500226.8 500 25.7 78.2 38.3 100.9
19.8/15.3 700/540

226.8 500 29.2 84.5 33.9 93.1 33.9 93.1 32.4 90.3 35.1 95.1 31.3 88.3 5.4 77.8 35.1 95.1 26.8 80.3 36.5 97.7 34.3 93.7 30.4 86.8

19.8/19.8 700/700

226.8 500 243 758 369 98.5

38.1/15.3 1346/540

226.8 500 256 781 353 95.5

38.1/19.8 1346/700

226.8 500 29.2 84.6 31.6 88.8 31.6 88.9 30.8 87.5 31.4 88.5 29.7 85.5 6.7 80.1 31.4 88.5

38.1/38.1 1346/1346

317.5 700 22.8 73.2 29.1 84.4 29.1 84.4 26.6 79.8

15.3/15.3 540/540

317.5 700 25.2 77.4 22.7 72.8 24.3 75.7 22.3 72.2 23.2 73.8 22.2 71.9 16.4 61.5 26.0 78.8 25.4 77.7 21.6 70.8

19.8/19.8 700/700

340.2 750 22.1 71.8 28.2 82.8

15.3/15.3 540/540

340.2 750- -- -- - - - -

340.2 750 19.9 67.8 33.2 91.7

15.3/19.8 540/700

M H 2 0
= Water Loop Flow Rate

W HXA = Cabin Air Flow

W HXB= Equipment Rack Air Flow
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TABLE 9. ADVANTAGES AND DISADVANTAGES OF SORTIE LAB AIR
CONDITIONING/VENTILATION CONCEPTS

Concept
Number Description Advantages Disadvantages

1 Series water flow with cabin 1. Performance acceptable at 227 kg/hr 1. Considerable ducting
Hx first. Separate gas loops (500 lbm/hr) water flow rate. 2. Cold air on cabin
for cabin and T. R. 2. Separate temperature controls for occupant.

cabin and T. R.

2 Series water flow with T. R. 1. More comfortable air on cabin 1.Must go to 318 kg/hr (700
Hx first. Separate gas loops occupants 21.4 0 C (70.5 0 F). Ibm/hr) water flow rate.
for cabin and T.R. 2. Separate temperature controls. 2. Considerable ducting.

3 Series water flow. Gas from 1. Less ducting than Cases 1 and 2. 1. Must go to 318 kg/hr
both Hx's distributed to (700 lbm/hr) water
cabin then circulated to flow rate.
thermal racks.

4 Series water flow. Gas from 1. Less ducting than Gases 1 and 2. 1. Must go to 318 kg/hr
both Hx's distributed to T.R. 2. Comfortable air temperature into (700 lbm/hr) water
then circulated to cabin. cabin 22.30 C (72.20 F). flow rate.

5 Series water flow. Series gas 1. Less ducting than Cases 1 through 4. 1. Must go to 318 kg/hr
flow through Hx's distributed 2. Comfortable air temperature (700 lbm/hr) water
to T. R. and then circulated entering cabin 22.1 0 C (71.9 0 F). flow rate.
to cabin.

6 Series water flow. Series gas 1. Marginally acceptable at 227 kg/hr
flow through Hx's distributed (5000 lbm/hr) water flow rate.
to cabin and then circulated 2. Less ducting than Cases 1 through 4.
to T. R. 3. Small total air flow rate required

15.3 m /min (540 ft3/min).
4. Comfortable air temperature entering

cabin 20.0 0 C (68 0 F).

7 Parallel water flow. Gas 1. Less ducting than Cases 1 and 2. 1. Water flow rate must
from both Hx's distributed to be greater than
cabin then circulated to 227 kg/hr (500 lbm/hr).
thermal racks. (Same as Case
3 except parallel water flow).

8 Parallel water flow. Separate 1. Easier control of cabin and T.R. 1. Water flow rate must
gas loops for cabin and T.R. temperatures. be greater than
(Same as Case 1 except 227 kg/hr (500 lbm/hr).
parallel water flow).

9 Series water flow. Gas flow 1. Less ducting than Cases I and 2.
from both Hx's into cabin 2. Acceptable performance at
with a fraction of this total 227 kg/hr (500 lbm/hr) water flow
flow circulated through the rate.
thermal racks. 3. Comfortable air temperature into

cabin.

10 Series water flow. Gas flow 1. Less ducting than Cases 1 and 2. 1. Must go to water flow
from both Hx's into T. R. 2. Comfortable air temperature into rate greater than
with a fraction of this total cabin. 227 kg/hr (500 lbm/hr).
flow circulated to the cabin.
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Figure 34. Air conditioning/ventilation concepts considered for Sortie Lab.
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exchanger/radiator system. These systems are considered the most viable
of the 10. The detailed schematics of these candidates are shown on Figures
35, 36, and 37.

A further evaluation was conducted of the 10 candidate concepts from a
mechanical standpoint. Weight and component availability were prime con-
siderations. The results of the mechanical evaluation are discussed below.
However, in summary, the conclusions are essentially the same as the thermal
evaluation, above.

The design characteristics of 10 system configurations have been eval-
uated. Concepts 2, 5, and 10 did not meet the Sortie Lab cabin temperature
requirements for the coolant and air flow rates used. In concepts 4, 5, and
10, air from the heat exchangers is ducted through the thermal racks into the
cabin. This ducting arrangement is not considered satisfactory because of the
following reasons:

* Variations in experiment heat loads will result in cabin temperature
transients that are not moderated by the cabin heat exchangers.

* Airflow into the cabin is determined by the equipment arrangement
and distribution in the cabin.

* Violates good air conditioning practice which is to keep heat from
being dissipated into the conditioned space. This is accomplished
by directing supply air toward the heat source or locating a return
air duct near the heat source.

Concepts 2, 4, 5, and 10 will not be considered further in this study
due to the reasons listed above.

In order to reduce the number of ducting configurations that would
satisfy the system schematics mentioned above and to simplify the comparison
of the systems, the following general guidelines and assumptions were used to
establish the system configurations to be evaluated:

* All systems will provide underfloor cooling (requires sealed floor
to assure circulation in underfloor area).

* Fan and muffler weights are assumed equal for all concepts.

* Weights of coolant lines and valves are assumed equal for all con-
cepts.
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CHX CHX CAB IN
Qs 572 w(1955 INTERFACE
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Figure 35. Baseline concept: MW = 226.8 kg/hr (500 lbm/hr), WA = 15.3 m 3/min (540 cfm),

W~B = 19.8 m3/min (700 cfm).



m = 45.4 kg/hr (100 Ibm/hr n = 226.8 kg/hr (500 Ibm/hr)
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Figure 36. Concept number 6. = 226.8 kg/hr (500 lbm/hr), W A = 15.3 m3/min (540 cfm),

W = 15.3 m3/min (540 cfm).
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Figure 37. Concept number 7: MW = 340 kg/hr (750 lbm/hr), VA = 15.3 m 3/min (540 cfm),

B = 15.3 m 3/min (540 cfm).



e Weight of filters is assumed equal in all concepts.

* Ducting sizes were not reduced along the run to maintain a constant

velocity or reduce weight.

The ventilation system concepts to be compared are shown schematic-

ally in Figures 38 through 43. The ducting arrangements for these concepts
are shown in Figures 44 through 47.

1 m /min., 84m n.5m(110
cfm) 198 i3 15. m3

0cfm: (540 cfm

hr(500 THERMAL RACKS
Ib/hr)

Figure 38. Ventilation system schematic for concept number 1.

3.1m3 15.3m3 33.7 m3
/sac /min. /min.

318 (110 (540 cfm) 1190 cfm)

kg/hr
(700 -
Ib/hr)

THERMAL RACKS

Figure 39. Ventilation system schematic for concept number 3.

68



3.1 m3 mi
110 cfm) 18.4m 3

kg/hr (650 cfm)
(500
Ib/hr

THERMAL RACKS

15.3 m3/min
(540 cfm) I

Figure 40. Ventilation system schematic for concept number 6.

1 m 15.3 m 33.7 m3
/min. I . I/min
(110 (540 cfm) (1 I V

/hr
L - (750

Ib/hr)

THERMAL RACKS

Figure 41. Ventilation system schematic for concept number 7.

a. Evaluation

(1). Method. The system characteristics used to compare the six

ventilation system concepts are shown below. The systems are compared for

each characteristic and assigned a numerical rating of from 1 to 5 with the

highest number indicating the best system. Also shown is a weighting factor

which indicates the relative importance of each characteristic. The most

important characteristic has the highest weighting factor.
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(11'mi lC' J18.4m3/n n.(650ycfm)

19.8 m /m n 15.3m

r(750
Ib/hr)

THERMAL RACKS

Figure 42. Ventilation system schematic for concept number 8.

3.1 m 3  56.5 mfi1996 cfm)

/min Circulation 2

227 kg
/hr(500

Ib/hrSystem Power Required 1

38.1: THERMAL RACKS
3 :

3 /min.,5.3 m /Min (13461
(540 cfm) cfm)

Figure 43. Ventilation system schematic for concept number 9.

Characteristic Weighting Factor

System Weight 1
Cabin Circulation 2
System Power Required 1
Crew Comfort 2
Experiment Equipment Considerations 2
System Cost 3
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15.2 X 45.7 cm(6 X 18) DUCT

15.2 X 33 cm(6 X 13) DUCT

15.2 X 33 cm(6 X 13) DUCT

15.2 X 45.7 cm(6 X 18) DUCT

15.2 X 45.7 cm(6 X 18) DUCT

15.2 X 45.7 cm(6 X 18) DUCT

FLOOR
(SEALED) 457.2 cm(180.00) EXPERIMENTS

FLIGHT IN ,152.4 cm(60.00) EQUIP. MTG.
DIRECTION ,

15.2 X 43.2 cm (6 X 17) DUCT

Figure 44. Ducting arrangement for concepts number 1 and 8.
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Figure 45. Ducting arrangement for concepts number 3 and 7.
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Figure 46. Ducting arrangement for concept number 6.
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Figure 47. Ducting arrangement for concept number 9.



The ventilation system concept comparison is shown in Table

10. Each characteristic is assigned a numerical relative rating for each sys-

tem concept. The relative rating is multiplied by the weighting factor to yield

a weighted rating. Statements concerning the characteristics are included for

each system concept to indicate the basis for assigning the numerical rating.

The ratings for each concept are added together to provide an overall numeric-

al rating (relative and weighted) for each concept. The highest numerical

rating indicates the most desirable system concept.

(2). Results. The relative and weighted ratings of the concepts

are summarized in Table 11. The maximum relative rating possible is 30 and

the maximum weighted rating possible is 55. The ranking of the concepts is

also shown.

Concept 6 is substantially ahead of the other concepts with 9,

7, 3, and 1 showing little differences. Concept 8 is well below the other con-

cepts.

b. Conclusions. Concept 6 is the most desirable alternate concept

compared to baselined concept 1, and concepts 3, 7, and 9. The latter con-

cepts are acceptable. However, before a final decision is made, a more

detailed experimental study of concept 6 should be made to insure that adequate

circulation can be provided without excessive additional fan power.

c. Future Work. An experiment equipment installation should be

defined for a payload with nominal heat loads and a payload with maximum heat

loads. Concepts 1, 3, 6, 7, and 9 should be compared for these two payload

arrangements. This comparison should be concerned with cabin circulation,

crew comfort, and experiment equipment considerations. If a problem is

identified for a system, the various methods and equipment that can be used

to alleviate the problem should be investigated and evaluated. These could

include adding or relocating air supply and return registers, adding ducting

and providing additional fixed or movable fans.

2. Cabin Temperature Control Valve Selection. The two primary

methods considered for controlling Sortie Lab cabin temperature are to con-

trol coolant flow or air flow through the cabin heat exchanger. Four valve

arrangements were evaluated for controlling coolant flow while one valve

arrangement was evaluated for controlling air flow. More coolant flow con-

trol valve arrangements were evaluated because there are more valve designs

available that are suitable for controlling coolant flow. The valve arrange-

ments evaluated are shown schematically in Figures 48 through 51.
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TABLE 10. AIR DISTRIBUTION SYSTEM COMPARISON

Air Distribution System Concepts

Concept 1 Concept 3 Concept 6 Concept 7 Concept 8 Concept 9

System Relative Weighted Relative Weighted Relative Weighted Relative Weighted Relative Weighted Relative Weighted
Characteristic Rating Rating Rating Rating Rating Rating Rating Rating Rating Rating Rating Rating

Cost Candidate fans and Candidate fans exist. Candidate Coolant Candidate fans exist. Candidate fans exist. Candidate coolant
coolant pump exist. pump and fans exist. Maximum ducting. pump exists. New
Maximum ducting. Minimum ducting. fan development

required.

4 12 3 9 5 1 15 3i 9 2 8 3 9

Weight 86 kg (190 Ib) 32 kg (70 lb) 20 kg (45 Ib) 32 kg (70 Ib) 86 kg (190 Ib) 64 kg (140 lb)
ducting ducting ducting ducting ducting ducting

1 1 4I 4 51 54 1 4 1I  1 2I 2
Power Required Moderate air flow. Moderate air flow. Lowest air flow. Moderate air flow. Moderate air flow. Maximum air flow.

Maximum ducting Small ducting Maximum ducting Small ducting Maximum ducting Large ducting
length. Minimum length. Large length. Minimum length. Maximum length. Maximum length. Minimum
coolant flow. coolant flow. coolant flow. coolant flow. coolant flow. coolant flow.

3 4 4 5 5 4 4 2 2 2 2
Cabin Circulation Not affected by Affected by Max effect from Affected by Not affected by Small effect from

experiment equip experiment equip experiment equip experiment equip experiment equip experiment equip
location. Lowest location. Good location. Low location. Good location. Lowest location. Good
cabin air flow. cabin air flow. cabin air flow. cabin air flow. cabin air flow. cabin air flow.

4 1 8 3 1 6 2 1 4 3 1 6 4 1 8 5 10

Crew Comfort Low noise. Low Low noise. Good Lowest noise. Good Low noise. Good Low noise. Low Maximum noise.
inlet air temp. inlet air temp. inlet air temp. inlet air temp. inlet air temp. Good inlet air temp.

3 1 6 5 10 5 1 10 5 I10 3 6 4 1 8

Experiment Sealed thermal racks Sealed thermal racks Sealed thermal racks Sealed thermal racks Sealed thermal racks Sealed thermal racks
Equipment required. Best con- not required. Diffi- not required. Diffi- not required. Diffi- required. Best con- not required. Fair
Considerations trol of air flow cult to provide cult to provide cult to provide trol of air flow control of air flow

distribution. proper air flow proper air flow proper air flow distribution. distribution.
distribution. distribution. distribution.

4 8 3 6 3 6 3 6 4 8 5 10

Total Rating 19 38 22 39 25 45 22 39 16 31 21 41

Weighted Rating = (Relative Rating) x (Weight Factor) System Characteristic Weight Factor

Relative Ratings (Highest No. = Highest Priority)
1 - Least Favorable Cost 3
2 - Weight 1
3 - Power Required 1
4- Cabin Circulation 2
5 - Most Favorable Crew Comfort 2

Experiment Equipment 2
Considerations



TABLE 11. SYSTEM CONCEPT RATING SUMMARY AND RANKING

Concept No. Relative Weighted Relative Weighted

Rating Rating Ranking Ranking

1 19 38 5 3

3 22 39 2 3

6 25 45 1 1

7 22 39 2 3

8 15 29 6 6

9 21 41 4 2

Redundant temperature control valves can be provided in a coolant

flow control system without a large weight penalty and space requirements

that would be necessary to provide redundant control valves in an air flow

control system. The air flow control valve system reliability can be improved

without using redundant valves by making the valve replaceable during flight.

The air flow control system provides a faster response to flow control element

position changes than the coolant flow control system. The difference in

response of the two systems is not important in this application because the

cabin volume introduces a relatively large time lag in cabin temperature

changes.

The five temperature control systems considered were evaluated for

system characteristics of temperature regulation, installation weight, comp-

lexity, reliability, and cost. The results of the evaluation are shown in

Table 12. The most important characteristic is cost followed by temperature

regulation and reliability. Installation weight is least important since control

valve weight is a small portion of the total environmental control system

weight.

The temperature control valve system selected for the phase B base-

line environmental control system is shown in Figure 50. This system uses

two-position valves with step control.

The ratings shown are subjective and the system selected was not

actually rated the highest due to the possibility of higher rated systems pro-

ducing unacceptable cabin temperature variations.
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Figure 48. Arrangement for flow control with modulating flow
control valve or three-way, two positron valve.

SELECTOR

VALVE

CONTRCONTROL
VALVEVALVES

CONTROL
VALVE

HEATSELECTOR

EXCHANGERI VALVE

Figure 48. Arrangement for flow control with modulating flow

control valve or three-way, two position valve.

EXCHANGER SELECTOR
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Figure 49. Arrangement for flow control with two-way, two-position valves.
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Figure 49. Arrangement for flow control with two-way, two-position valves.
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Figure 50. Arrangement for three step flow control with three-way, two-position valves.
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Figure 51. Arrangement for air flow control with modulating air
flow control valve.

The selected arrangement gives a semi-modulated flow control,
actually of four steps or levels in coolant flow. The associated control elec-

tronics consist of basically thermal switches (different settings) and relays
for each solenoid valve which makes for simplicity and reduced cost. This
system with selection of a long stroke solenoid valve and upstream filtering
gives a good compromise between temperature control, cost, and reliability.

The magnitude of temperature variations to be expected from the
highest rated temperature control valve arrangements should be estimated by
using the performance characteristics of these valve arrangements in the
Sortie Lab environmental control system math model. The results of such
an analysis may indicate that a different temperature control valve arrange-
ment should be selected for the Sortie Lab.

The Shuttle orbiter cabill temperature control is to be accomplished by
using an air flow control system. It should be determined if the components
in the orbiter system can be used in the Sortie Lab. If so, the modulating
air flow control system could be equal to or better than the baseline system.
An additional consideration is the difficulty being experienced with coolant
temperature control valves on Skylab - of a total of 10 on board, 4 have
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TABLE 12. TEMPERATURE CONTROL SYSTEM COMPARISON

Temperature Control System

2-Way, 2-Position 3-Way, 2-Position 2 Pos Valves, Step Modulating Flow Modulating Air Flow

Valves (Figure 49) Valve (Figure 48) Control (Figure 50) Control (Figure 48) Control (Figure 51)

System Relative Weighted Relative Weighted Relative Weighted Relative Weighted Relative Weighted

Characteristics Rating Rating Rating Rating Rating Rating Rating Rating Rating Rating

Temp Regulation Maximum Temperature Maximum Temperature Reduced Temperature Smallest Temperature Smallest Temperature

Variation Variation Variation Variation Variation

1 2 1 2 3 65 10 5 10

Installation Low weight. Installation Minimum Weight. Least High weight. Most Low weight. Least Highest weight.

Weight and not complex. complex installation. complex installation. complex installation. complex installation.

Complexity

3 3 5 5 2 2 4 1 4 1 1

Reliability Reliable. Simple Most reliable. Simple Fair reliability. Simple Least reliable. Valve Poor Reliability.

valve construction. valves. Fewest valves. valves. Max number of mechanically complex. Complex valve (motor

Simple controller. Simple Controller. valves. Complex Most complex and gears or linkages).
controller. controller. No redundancy.

Complex controller.

4 8 5 10 3 6 1 2 1 2

Cost Low cost. Simple Lowest cost. Fewest High cost. Most Highest cost. Most High cost. One valve

valves and controller. valves and simplest components and complex valves and required. Complex
controller. complex controller. controller. controller. Complex

valve.

4 12 5 15 3 9 1 3 3 9

Total Rating 12 25 16 32 11 23 11 19 10 22

Weighted Rating = (Relative Rating) x (Weight Factor) System Characteristic Weight Factor

Relative Ratings (Highest No. = Highest Priority)

1 - Least Favorable Temperature Regulation 2

2 - Installation Weight and Complexity 1

3 - Reliability 2

4 - Cost 3

5 - Most Favorable



developed on-orbit "hang up" problems. These valves are of two types -
vernatherm and a complex latching solenoid. Both types are highly sensitive

to particulate contamination. The advantage of utilizing an air valve is that a

spare can be used as a redundant part. In the event the primary valve would

fail, replacement with another valve would require minimum operation time.

Human comfort will become an added parameter to final valve selec-

tion, if cost, weight, and reliability studies rule out the modulating air flow

valve. A choice between the concepts of figures 48 and 50 may become

dependent upon cold air drafts that could be produced by the former system,
sending full coolant flow to the heat exchanger. Final determination may

depend upon testing with the selected air distribution system.

E. Coolant Fluid Selection

Freon 21 was initially selected for the Sortie Lab heat transport loop

in order to maintain commonality with the Shuttle orbiter's thermal control

system. An investigation of other candidate fluids was not performed. To

substantiate the selection of Freon 21, this study was conducted.

A number of coolant fluids were evaluated for possible use in the heat

transport loop of the thermal control system. The Sortie Lab ECS baseline

design represents a dual heat transport loop configuration. The coolant media

located internal to the lab is water and external is Freon 21.

The candidate fluids with their respective parameters that were investi-

gated are shown in Table 13. These candidate fluids were identified from the

Skylab and Apollo programs through a literature survey.

A figure-of-merit parameter was derived to measure performance of

the fluid. (First column shown in Table 13 depicts this parameter analysis.)

This is a very useful term for fluid evaluation since it takes into account a

number of physical and thermal properties of the fluid under study. The

figure-of-merit was defined in the following form:

F = Heat transfer effectiveness/pumping power

The larger the figure-of-merit the better the performance of the fluid.

Criteria used in evaluation of candidate coolant fluids was as follows:
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TABLE 13. SORTIE LAB COOLANT FLUID EVALUATION

Figure Flash Pt. Freeze Pt. Boiling Pt. Toxicity
Coolant of Merit OC [OF] OC [oF] OC [oF] (Mac) Odor Material Compat.

Water* 1.000 N.A. 0 (32) 100 (212) N.A. None Elastomers-no swell
corrosive

Methanol/Water* (60/40) 0.234 21 (69) -73 (-100) 76 (169) 26 mg/m 3  Noxious Elastomers-no swell
corrosive

Methanol/Water* (80/20) 0.154 14 (58) -103 (-154) 70 (158) 26 mg/m 3  Noxious Elastomers-no swell
corrosive

Glycol/Water* (60/40) 0.114 > 116 (> 240) -54 (-65) 110 (230) 114 mg/m 3  Slight Elastomers-no swell
corrosive

Freon E-3 0.013 N. A. -107 (-160) 153 (307) Toxic at None Elastomers-slight swell
Non-flammable > 2600 C (> 5000 F) Non-corrosive

Freon 21 0.065 N.A. -135 (-211) 9 (48) 420 mg/m 3  Very noxious Elastomers-large swell
Non-explosive Non-corrosive

FC-75 0.032 >204 (>400) -93 (-135) 102 (216) N.A. N.A. Elastomers-no swell

Coolanol-15 0.022 >77 (> 170) -97 (-140) 232 (450) Toxic at 149 0 C Slight Elastomers-moderate swell
(300 0 F) Non-corrosive

Freon E-2 0.022 N.A. -123 (-190) 101 (214) Toxic at > 2600 C None Elastomers-slight swell
Non-flammable (> 500 0 F) Non-corrosive

FC-77 0.022 >204 (>400) -101 (-150) 97 (207) N.A. N.A. Elastomers-no swell

Freon E-1 0.035 N.A. -154 (-246) 39(102) Toxic at > 260'C None Elastomers-slight swell
Non-flammable (> 500 0 F) Non-corrosive

Oronite Flo-Cool 100 0.020 116 (240) -73 (-100) 149 (300) N.A. N.A. Elastomers-moderate swell

*Corrosive when without corrosion inhibitors.
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Fluid Properties

Low freezing point
Low viscosity over wide temperature range
Minimum toxicity
High flash point

Thermal Requirements

Q = 29,200 Btu/hr = 8. 5 kW
AT = 58 0 F = 14.4 0 C

Tabulated values shown in Table 14 describe coolant fluid specific
heat, thermal conductivity, density, viscosity, and the required mass flow
rate that would meet the thermal requirements specified above.

Screening of the coolant fluid parameter shown in Table 13 led to the
selection of four candidate coolant fluids for further analysis. They are
Freon 21, Freon E-1, Freon E-2, and Freon E-3. Of these four, Freon E-3
exhibits the lower figure-of-merit and is the most viscous. Fluid viscosity
versus fluid temperature relationship for the three coolants - Freon 21,
Freon E-1, and Freon E-3, is shown in Figure 52. A viscosity curve for
Freon E-2 is not shown, but it is higher than that of Freon E-1. Therefore,
properties of Freon E-1 and Freon 21 were traded off.

Inspection of Figure 52 shows that Freon 21 has the lowest viscosity
across the investigated temperature range of -73°C to 60OC (-1000 F to +140 0 F).
Freon E-1 is more viscous than Freon 21, but not much greater.

There is one significant disadvantage of using Freon 21 as a coolant
medium. It is incompatible with commonly used elastomeric materials.
Freons have been noted to be troublesome in their attack of certain rubbers
and other nonmetallic seal materials. For most industrially important Freons,
specific rubber types and compounds are known which are satisfactory for
most purposes, but Freon 21 ranks as a troublesome exception. Development
costs for a satisfactory rubber material can be high when using Freon 21. The
Freon E series liquids are much more compatible to elastomeric materials.
Secondly, the vapor pressure of Freon 21 is much higher than that of Freon
E-1. For example, at 51. 70 C (125'F) Freon 21 has a vapor pressure of
41.4 N/cm2 (60 lb/in2 ), whereas, for Freon E-1, it is 15.2 N/cm2 (22 lb/in2 ).
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TABLE 14. CANDIDATE COOLANT FLUID PHYSICAL PROPERTIES

Cp n k p p x 104  vx 105

W-hr BTU lb lb W BTU kg lb N-sec lb m2  ft 2

Fluid kg-oC lb F hr hr m-oC hr OF ft m 3  ft 3  m 2  ft sec sec sec

Water 1.16 1.00 227 500 0.579 0.335 998.18 62.32 13.01 6.74 0.10 1.08

Glycol/Water 60/40 0.86 0.74 306 675 0.380 0.22 1070.89 66.86 59.97 40.3 0.56 6.03

Coolanol-15 (MCS-198) 0.50 0.43 528 1163 0.114 0.066 900.15 56.2 21.28 14.3 0.24 2.54

Oronite Flo-cool 100 0.55 0.46 493 1087 0.099 0.057 895.35 55.90 0.28 3.01

Freon 21 0.297 0.256 886 1953 0.121 0.07 1387.07 86.60 3.60 2.42 0.03 0.28

Freon E- 1 0.28 0.24 945 2083 0.069 0.040 1561.65 97.5 5.58 3.75 0.04 0.38

Freon E-2 0.28 0.24 945 2083 0.069 0.040 1681.78 105.0 12.40 8.33 0.07 0.79

Freon E-3 0.28 0.24 945 2083 0.069 0.040 1742.64 108.8 27.38 18.4 0.16 1.69

FC-75 0.28 0.24 945 2083 0.140 0.081 1789.09 111.7 17.41 11.7 0.10 1.05

FC-77 0.28 0.25 945 2083 0.069 0.040 1801.91 112.5 0.08 0.90

Methanol-Water 60/40 0.93 0.80 284 625 0.329 0.190 895.35 55.9 15.33 10.3 0.17 1.83

Methanol-Water 80/20 0.80 0.69 329 725 0.268 0.155 850.50 53.1 12.60 8.47 0.15 1.59

00
CU1
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Figure 52. Viscosity of freon compounds.
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Freon 21 was selected for the design baseline due to its commonality

with the shuttle orbiter. However, based on this study Freon E-1 is a recom-

mended candidate replacement for Freon 21.

F. Dual Heat Transport Loop Design Versus Single Loop Design

The purpose of this study was to determine system weight and power

savings relating to the selection of a single heat transport coolant loop in lieu

of the Sortie Lab's baseline ECS design - representing a dual heat transport

coolant loop configuration.

For the single coolant loop design concept, two major components can

be deleted. They are the interface heat exchanger (water/Freon) and a pump

package with an associated accumulator. The assumed dry weight for the

interface heat exchanger used in this study was 46 kg (105 lb), but more

recent estimates indicate this component would weigh several hundred pounds

and would be a very difficult design problem in terms of achieving a reason-

able weight and volume. The size of the heat exchanger is a function of the

AT and fluid flow rates. The AT is the difference between the outlet tempera-

ture of the water side and the inlet temperature of the Freon 21 side. For

given fluid flow rates, the smaller the AT the larger the heat exchanger.

This heat exchanger is not an existing item and the development costs may be

high.

Table 15 describes advantages and disadvantages in trading off the two

coolant loop design concepts. Experience with the Skylab ECS showed that

there were on-orbit problems that required system servicing and that access

to hardware was limited. With a single loop design, all critical hardware

(except the radiator) could be located within the cabin. These are some of

the reasons why a single coolant loop design concept was traded against the

baseline.

Schematic identifying the single coolant loop design concept is shown

in Figure 53.

For the single coolant loop design concept, five different coolant

mediums were selected for analysis. They were: Freon 21, glycol water

(60/40), Freon E-1, Freon E-3, and FC-75. Parameters evaluated were

total system flow losses and the system weight change relative to the "base-

line" dual coolant loop design concept.
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TABLE 15. SINGLE LOOP VERSUS DUAL LOOP

Single Loop

Advantages * Commercial leak detection
devices available.

* Freon/water interface heat
exchanger not required. * Less complex qual test rig.

* Water pump and accumu- * Less logistic problems and
lator not required. paperwork to maintain.

* Less system weight and * Experiment integration
volume. flexibility.

* Less complex coolant
interface with orbiter Disadvantages
(if interconnect with
orbiter is required). * Use of Freon coolant in

cabin. More toxic and
* Less GSE required - flammable than water.

reduced prelaunch
servicing and leak * Byproducts of Freon
checking (one coolant oxidation are toxic.
loop - not two).

* All functional hardware
accessible for on orbit
trouble shooting.

* Reduced coolant related
corrosion problems.

Dual Loop

Advantages Disadvantages

* Limited heat rejection * Freon/water interface heat
still available in the event exchanger design require-
of loss of Freon loop and ments unreasonable, creating
radiator. large bulky hardware.
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Figure 53. Sortie Lab thermal control single coolant loop concept.



Assumptions made for this study were that a heat exchanger and radia-

tor efficiencies are constant, heat rejection capability of the fluid analyzed is

8. 5 kW, and the Sortie Lab mission length is 7 days (used for consumable

weight calculation purposes).

System weight change was determined by the summation of the follow-

ing elements: (1) change in coolant density, (2) change in consumable weight

(02 and H2) required for pump power, (3) change in weight of associated

valves due to line size changes, and (4) change in weight of deleting the inter-

face heat exchanger (water/Freon 21) and the water pump package used in the

dual coolant loop design. Components used in the single coolant loop design
for system flow loss calculations were the same type as for the dual coolant

loop design.

Table 16 shows a summary of the study results. The weight savings
for the single loop coolant system are presented in column 1 along with the

flow loss in column 2, and power requirements in column 3. The tubing sizes

for the dual coolant loop design baseline model are 1. 27-cm (0. 50-in.)

diameter for the water line and 1.91-cm (0. 75-in.) diameter for the Freon

21 line.

Figures 54 and 55 show generated curves depicting weight and AP

changes versus line size for the Freon 21 and Freon E-1 coolant fluids used

in the single coolant loop design concept. (For the interpretation of system

weight change, a (-) sign indicates weight savings whereas (+) sign indicates

additional weight as compared to the dual loop concept). Weight and AP

curves were also generated for glycol water (60/40), Freon E-3, FC-75, but

are not shown since coolant fluids Freon 21 and Freon E-1 are the prime

candidates for the single coolant loop design.

Referring back to table 16, the selection of Freon 21 for the single

loop design indicates a total system weight savings of 49. 3 kg (108. 6 pounds)

with a system pressure drop of 25 N/cm2 (36 lbf/in2) when traded against the

"baseline" dual coolant loop design. Selection of Freon E-1 for the single

loop shows a total system weight savings of 37 kg (81. 5 pounds) with a system

pressure drop of 27 N/cm2 (38. 5 lbf/in2). Obviously, Freon 21 exhibits better

performance than Freon E-1, and glycol water (60/40) would be the best.

However, glycol water has a major disadvantage, that is it has a higher

freezing point -54°C (-65°F) compared to the Freon coolants -135oC (-211oF)

for Freon 21 and -154 0 C (-245°F) for Freon E-1, and it is more toxic.

Therefore, again this leads to a trade-off between Freon 21 and Freon E-1

coolants for the single coolant loop design concept.
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TABLE 16. DUAL LOOP VERSUS SINGLE LOOP STUDY RESULTS

s. Para. Sys. Wgt. Sys. Flow Loss Pump Power In

Coolant kg (lb.) N/cm2 (lbf/in2 ) (Watts)

Dual Loop Baseline -- 22. 5 (32. 7)* 114

(Water and Freon 21)

Single Loop

Freon 21 -49.3 (-108. 6) .24. 8 (36. 0) 176

Glycol Water -83.1 (-183.3) 9.8 (14.2) 31

(60/40)

Freon E-1 -37.0 (-81.5) 26. 5 (38.5) 178

Freon E-3 -22. 1 (-48.7) 35.5 (51.5) 214

FC-75 -19. 0 (-41. 8) 31.0 (45.0) 182

*AP = 10.7 N/cm2 (15.5 lbf/in2 ) for water loop and AP = 11.9 N/cm 2 (17.2 lbf/in2 )
for Freon 21 loop.

Assumptions: Line size = 1.91 cm (0.75 inch)

A new pump design for each specific application

Pump/motor efficiency = 25 percent

Shuttle design interface HX for dual loop [ 79.4 kg (175 lb.) wet wgt. ]
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Freon E-1 was selected as the single loop coolant fluid even though
Freon 21 has the best thermal performance properties. Freon E-1 is less
toxic and more compatible with elastomeric materials and has a lower vapor
pressure than Freon 21. This lower vapor pressure, with its resulting lower
allowable system operating pressure, will permit use of more existing hard-
ware for the cabin secion of the coolant loop. Operational concerns with
Freon 21, not now readily visible, could develop into serious problems.

Thus, Freon E-1 is the recommended coolant for the single coolant
loop design configuration. The reason for not selecting a single coolant loop
design as the baseline in lieu of the dual coolant loop design is the fear of
using Freon inside the cabin. Toxicity characteristics of the Freon coolants
need a more thorough investigation.
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SECTION V. LIFE SUPPORT

The baseline life support systems for Sortie Lab were derived from the

requirements for crew size, mission length, and experiment support (see

Table 1).

A. Atmosphere Supply and Control

The atmosphere supply and control design maintains the pressurized

lab at 10.1 N/cm 2 (14.7 PSIA), supplies gaseous oxygen and nitrogen for re-

pressurization of the scientific airlock, supplies oxygen for metabolic consump-

tion. The design also includes vent and relief components which permit the lab

to be vented to the outside environment and prevent the lab structure from

being exposed to excessive internal or external pressure differentials. In the

early studies, consideration was given to having the capability for one repres-

surization of the lab during a mission, but this requirement was never imposed

on the lab design. A 318 kg (700 lb) weight penalty was associated with satis-

fying this requirement.

The total oxygen and nitrogen consumables required for the nominal

7-day experiment mission and the LST service mission are given in Table 17.

The LST requirements are larger than the nominal experiment mission and

would be supplied as an add-on weight to the baseline ECS and chargeable to

experiment weight. The LST servicing mission has been eliminated as a future

design requirement for Sortie Lab. The lab consumable interfaces with the

Shuttle orbiter must be clearly understood. For example, in the experiment

missions if the baseline Sortie Lab is entirely dependent on the Shuttle for

0 2/N 2 supply the total amount required for payload support is a maximum of

42. 2 kg (93 lbs) of oxygen and 23 kg (51 lbs) of nitrogen. However, if the

Sortie Lab has its own 2-gas control system the total lab oxygen/nitrogen

storage requirements are 24. 5/23. 1 kg (54/51 lbs), respectively. The delta

oxygen weight of 17.7 kg (39 lbs) is the metabolic oxygen makeup required

when the crew is in the Shuttle for half of the 42 man-day mission. The other

21 man-day is supplied by the Sortie Lab system. The autonomous lab concept

sizes the tankage requirements considering these guidelines.

The vent valve size required to repressurize the lab (assuming cabin

depressurization on-orbit) during reentry was estimated for various maximum

allowable negative pressures on the module structure (Figure 56). The max-

imum ambient pressure build-up in the Shuttle payload bay area was assumed

to be 0. 014 N/cm 2/sec (0.02 PSI/sec). The final vent valve size is based on

the allowable structural design and maximum repressurization rates of the

Shuttle payload bay area.
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TABLE 17. OXYGEN/NITROGEN CONSUMABLES REQUIRED

FOR SIZING SORTIE LAB TANKAGE

Consumable Experiment Missions LST Service Mission

Requirement 02, kg lbs N 2, kg lbs 02, kg lbs N2 , kg lbs

Metabolic*

- Maximum (42 man-days) 17.7 39 - - 4. 1 9 - -

- Nominal (28 man-days) 11.8 26 - - - - - -

- Minimum (14 man-days) 5.9 13 - - - - - -

Cabin Leakage

- Sortie Lab 2.3 5 7.3 16 2.3 5 7.3 16

- LST - - - - 2.7 6 8.6 19

Cabin Repressurization

- Sortie Lab - - - 28.1 62 92.5 204

- LST - - - - 19.1 42 62.6 138

Airlock Repressurization

- Sortie Lab 4.5 10 15.9 35 - - - -

- LST - - - - - - - -

Total

- Maximum 24.5 54 23.1 51 56. 2 124 171.0 377

- Nominal 18.6 41 - - - - - -

- Minimum 12.7 28 - - - - - -

*Emergency 02 provisions are to be determined. Oxygen requirement for LST Service Mission is for

10 man-days. Shuttle provides half of the metabolic oxygen.
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As a safety measure to prevent overpressurization of the lab, cabin
pressure relief valves set to open at 11 N/cm 2 (16 psia) have been provided.

1. Two-Gas Control Systems. Two different two-gas control systems
have been investigated. The first system was a regulated pressure system
used on Skylab. The second system was a pulse feed system used on the NASA
ninety day manned test.

a. Regulated pressure system (baseline configuration). This
system operates to control the cabin total pressure with an absolute pressure
(psia) regulator. All gasses entering the cabin, both oxygen and nitrogen,
must enter through this regulator. The cabin gas composition (hence partial
pressures of 02 and N2) is controlled by switching the regulator inlet to flow
the gas source that is below its partial pressure requirements in the cabin. In
Skylab the decision to select between gas sources is made by the partial pres-
sure oxygen (PPO2) sensor and the PPO2 controller. Hence, the PPO2 control
system controls the oxygen partial pressure by feeding 02 to the inlet of the
total pressure regulator on a 02 demand basis and the total pressure regulates
the cabin total pressure using whichever gas (02 or N2) is present at the
regulator inlet to satisfy the total pressure demand. The regulated system is
represented by Figure 57 "Regulated 2-Gas System."

b. Pulse feed system. The pulse feed system as shown in Figure
58: "Pulsed 2-Gas System," has been shown by both analysis and tests to be
inherently more precise and flexible than the regulated system. However,
these inherent advantages are offset by large unknown areas in regard to costs
and design. The system feeds 02 and N2 to the cabin by precision timed pulses
of gas from a regulated source through an orifice operating under choked flow
conditions. The pulse frequency is proportional to the error existing between
the required partial pressure set at the input of an integrating amplifier and
the prevailing partial pressure existing in the cabin. An increased error
results in reduced rise time for the integrated output of the integrating ampli-
fier to produce an output pulse at the level detector. After sixteen pulses a
gas pulse is admitted to the cabin. The 02 and N2 controllers are electronically
independent for the configuration of Figure 58.
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Figure 57. Regulated 2-gas system.
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2. Gas Control Selection for Sortie Lab. The pulse system was a

candidate for the Skylab two-gas control along with the regulated system. When

the Skylab two-gas system was selected more test data and confidence existed

for the regulated system than for the pulse system. Therefore, the regulated

system was chosen for Skylab. As a result of increased data and flight applica-

tion in Skylab, the regulated system has continued to be in favor for Shuttle

two-gas control and consequently for Sortie Lab two-gas control. The reason

for having identical two-gas systems for Shuttle and lab is cost effectiveness

and commonality. It was decided to use the regulated two-gas system in Sortie

Lab and Shuttle in the same configuration as it is used in Skylab and is currently

shown that way on all Phase B study Sortie Lab schematics.

3. Modification of Regulated System. When independent regulated

pressure systems are located in separate volumes (i.e., Shuttle cabin and

Sortie Lab) the interaction of the two systems needs to be evaluated. The pri-

mary concern would be the inability of one system to automatically maintain

required 02 partial pressure control. This problem may occur if the total

pressure regulator of one system dominates the other in control of gas supply

to the cabin. The other total pressure regulator could flow less oxygen through

it than the consumption rate occurring in the cabin and the 02 partial pressure

would decay. A modification of the regulated system to eliminate this condition

is shown in Figure 59. This arrangement allows the addition of oxygen around

the total pressure regulator without the danger of cabin overpressurization.

The 02 control valves selected are normally closed and the normal failure mode

for these valves is in the closed position. Continuation of a more in-depth study

of this system is required. A comparison of this system in regards to perform-

ance and hardware development against the other two gas regulation systems is

shown in Table 18. The modified system would be required for both the Shuttle

and Sortie Lab to maintain proper 02 supply and 02 partial pressure levels for

either closed or open hatches between the cabins. The potential regulator

interaction existing in the unmodified pressure regulated systems can be illus-

trated by an assumed design situation (Figure 60). The Shuttle and Space-

lab total pressure regulator design characteristics (gas flow versus pressure)

and the consumable usage rates will influence the oxygen control levels. With

no crewmen in the lab and the Shuttle airlock hatch closed, the lab regulator

supplies 0 2 /N 2 only to makeup gas leakage overboard. After the hatches are

opened and crewmen are in the lab and Shuttle simultaneously, the total pres-

sure in each area is equal with hatches open (assume 14. 7 psia). The Shuttle
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TABLE 18. SORTIE LAB 2 - GAS TRADE SUMMARY

Parameter Baseline Design Modified Regulated Pulsed

Total & PP02 Press 10.1 ± 0.1 N/cm 2  10.1 ± 0.1 N/cm 2  10.1 ± 0.14 N/cm 2

10.1 + 0.14 N/cm 2  (14.7 ± 0.15 psi) total, (14.7 ± 0.15 psi) total, (14.7 ± 0.2 psi) total,

(14. 7 ± 0. 2 psi) total, 2. 5 ± 0. 2 N/cm 2  2.1 ± 0.14 N/cm2  2.2 ± 0.03 N/cm 2

2.1 ± 0.07 N/cm 2  (3.6 ± 0.3 psi) PPO2. (3.1 ± 0.2 psi) PP02 (3.19 ± 0.05 psi) PPO2

(3.1 ± 0.1 psi) PP02  Lockup problems exists No lockup on 02 feed No lockup on 02 feed

on 02 feed

PPO2 Controller Impacts PP02 level and New design Shuttle design in design
tolerance requirements accept test

Total Press N/A - regulated N/A - regulated Shuttle design in design

Controller accept test

PP02 Sensor Fuel Cell-Type or eq Fuel Cell-Type or eq Fuel Cell-Type or eq

Total Press Sensor N/A - regulated N/A - regulated Strain gas - TBD

Atmosphere New design New design New design

Controller

Leakage Analysis Poor Poor Good in analysis, no

detection/quanity existing design
± 2. 7 kg/day (+ 6. 0 lb/
day) 95% confidence
level

Hardware design Designed & qualified Uses flight qualified TBD
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Figure 60. Factors affecting cabin pressure regulation.
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and lab regulators may both be flowing oxygen but the quantity through one may

be low enough to cause a depletion of oxygen in the cabin because total pressure

may be such that oxygen is being consumed faster than it can be delivered into

the cabin. This could be the case assuming that the regulators in both cabins

operate on the nominal regulation slope shown in Figure 60. It may also be

true for the case if the two cabin regulators would not maintain identical slopes
and operate outside the nominal regulation slope, but still be contained within

the regulation envelope. The expected control levels under varied regulator
characteristics, crew timelines and leakage rates need to be evaluated more

fully. This evaluation should investigate both open and closed hatch conditions

for on-orbit operations.

B. CO2 Removal/Humidity Control

The Sortie Lab design requirements for CO 2 removal and humidity
control are reviewed next. The crew loads and control levels specified are
for sizing the Sortie Lab systems and not the Shuttle orbiter. This is impor-
tant because the crew only spends half their time in the Sortie Lab during the
mission.

1. CO 2 Removal. The CO 2 generated by the crew will be removed by

passing cabin air through a non-regenerative lithium hydroxide (LiOH) canister
design. The basic system reaction is

2 LiOH + CO 2 -Li 2CO 3 + H20(g) + Heat

where

LiOH - lithium hyroxide

CO 2  - carbon dioxide
Li 2CO 3 - lithium carbonate

H20(g) - water vapor (latent load increase 407 BTU/Lb-CO 2
absorbed)

Heat - 922 x 10 3 J/lb (875 BTU per.lbm) CO 2 absorbed
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Compared to other CO 2 removal concepts, the LiOH processing tech-
nique is optimum from every standpoint (weight, volume, power, cost, simple
operation, and maintenance). The amount of LiOH required to remove the 21
man-day CO 2 load is 23. 3 kg (51.4 pounds) (Table 19). This assumes a max-
imum LiOH canister utilization efficiency of 90 percent.

Design concepts available from past, present and future manned space-
craft programs were reviewed and evaluated for Sortie Lab application. The
programs utilizing LiOH canisters for CO 2 removal had a wide range of canister
capacities which results in a variable number of canisters required for each
concept. The LiOH design being developed under the Space Station Prototype
(SSP) program was selected for utilization in the design reference model be-
cause it has optimum operating features. Each canister charge will contain
7.9 kg (17.4 pounds) of LiOH. A maximum of 3 canisters is required to
satisfy any 7-day Sortie Lab mission. The required air flow through the canister
to maintain acceptable CO 2 levels is 0. 3 to 0. 6 m3/min (10 to 20 ft 3/min) (Fig-
ure 61). Flow pressure drop through the canister for this flow range is less
than 2. 54 cm (1.0 inch) of H20. Commonality with the Shuttle design is a
desired feature but requires more maintenance time on-orbit by the crew to
change canisters unless the canister capacity is increased.

A study was made to assess the impact on the baseline design to reduce
the nominal CO 2 level to 0. 23 mm Hg to accommodate life science payloads. A
total flow of 5. 9 m 3/min (210 CFM) through LiOH canisters will maintain the
desired CO 2 level. To achieve this flow, three fans in parallel, 2. 0 m 3/min
(70 CFM each) flow through the previously baselined three LiOH canisters. It
should be noted here that no increase in the number of LiOH canisters is
required, only an increase in the flow through the canisters. The basic penalty
for this design concept in comparison to the baseline concept is the additional
cost, weight and power of three additional fans. These were estimated to be
an additional 135 watts, 15 kg (33 pounds) and $ 9000. The real unlknown in
this study is the actual LiOH canister performance characteristics (AP versus
flow, utilization efficiency). For example, if the actual LiOH canister AP is
5.08 cm (2.0 inches) of H20 at 1.0 m3/min (35 CFM) (rather than the 2.54 cm
(1.0 inch) of H20 at 2 m3/min (70 CFM) the delta increase in weight and power
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TABLE 19. DESIGN CONSIDERATIONS AND CONCEPTS FOR SORTIE LAB CO 2 REMOVAL WITH LiOH

Design Consideration Maximum Nominal Minimum

kg lbs kg lbs kg lbs

CO 2 Produced, Crew Only 21.0 46.3 14.0 30.8 7.0 15.4

LiOH Required (lbs) 23.3 51.4 15.5 54.2 7.7 16.9

LiOH Design Concepts Canister Capacity (Man-Days) Canister Req'd

Gemini 28. 0 1

Apollo 1.5 14

Shuttle 4.0 6

SSP 7.0 3
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Figure 61. Sortie Lab CO 2 levels as a function of crew size and processing rate through the LiOH canisters.



above the baseline design is 74 kg (164 pounds) and 270 watts, respectively.

A comparison of the design baseline and the alternate concept is given in Figure

62.

2. Humidity Control. The baseline humidity control method is with a

condensing heat exchanger. Again this processing technique is optimum,

based on program requirements and past manned spacecraft experience. The

cabin humidity (or water vapor partial pressure) will be maintained between 6

and 11 mm Hg. This corresponds to a dew point temperature range of 4 to

130 C (39 to 550 F). Low cabin dew points are required for optimum cabin cool-

ing concepts. The optimum dew point temperature desired for normal opera-

tion of the lab is -7 + 30 C (45 + 50 F). The rationale for this requirement is

reviewed under the cabin air conditioning discussion. The design loads for

sizing the condensing heat exchanger are given in Table 20 and consider the

latent loads generated by the reaction of CO 2 and LiOH. The maximum loads

occur when four crewmen are in the lab.

The Skylab hardware was selected primarily because more design data

and experience is available than from the other two concepts. However, it

should be pointed out that the capability of a condensing heat exchanger to handle

both latent loads and large sensible loads make it a viable candidate for control-

ing both humidity and cabin air temperature for crew comfort. Therefore, trade

studies should continue in this area.

The schematic shown in Figure 62 represents the selected design con-

cept for integrating CO 2 removal and humidity control of the Sortie Lab. The

operating characteristics are a function of the number of crewmen working on

the Sortie Lab. For a nominal two-man crew, only one fan is operating. This

fan provides air flow through both the CHx, 1. 3 m 3/min (45 CFM) and the LiOH

canister 0. 3 m 3/min (10 CFM). A fan developed as a backup design for the

Skylab program was selected to provide the required air flow and satisfy the

system pressure drops. For a four-man crew, both fans are operating. Each

CHx has 1. 3 m 3/min (45 CFM) air flow and the total flow through the LiOH

canister is 20 CFM.

This design concept has operating flexibility to accommodate variable

crew sizes and to provide limited humidity control in the system for a fan failure

with a four-man crew. For one fan operating with a four-man crew, the cabin

dew point would rise to 16" C (60°F) before one CHx could remove the maximum
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(55 cfm) L (45 cfm)CHX 2.5 m /min

0.3 m/min 3 (90 cfm)
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2.0 m /min.

03 m3/min. LIOH (70 cfm) LIOH

(1 0 rfm) 
L

S3 2.0 m /min. 5.9 m3/min.
16 mr--1 (70 cfml LIOH (210 cfm)

min. X I
(55 dm) 3

2.0 m /min. LIOH

t , (70 cfm)

DESIGN REFERENCE MODEL ALTERNATE CONCEPT

NOMINAL MAXIMUM NOMINAL MAXIMUM

1 - 2 3 - 4 NUMBER OF CREWMEN 1 - 2 3 - 4

0.3 m 3/min.(10 cfm) 0.6 m 3/min.(20 cfm) TOTAL FLOW THROUGH 4.0 m3 /min.(140 cfm) 5.9 m3 /min. (210 cfm)
LIOH CANISTERS

45 WATTS 90 WATTS TOTAL FAN POWER 135 WATTS 225 WATTS
(LIOH + HUMIDITY)

LESS THAN 3 mm HG CABIN CO2 LEVEL LESS THAN .23 mm HG

100 kg(220 Ibs) MAXIMUM TOTAL WEIGHT OF 115 kg(253 Ibs) MAXIMUM

CO2/ HUMIDITY CONTROL

Figure 62. Comparison of CO 2 removal/humidity control systems.



TABLE 20. DESIGN CONSIDERATIONS AND CONCEPTS

FOR CONDENSING HEAT EXCHANGER

Design Consideration Maximum Nominal Minimum

Latent Load Watts BTU/hr Watts BTU/hr Watts BTU/hr

- Crewmen 244 832 122 416 29 100

- LiOH/CO 2 Reaction 44 150 22 75 11 37.5

- Experiments 0 0 0 0 0 0

Total 288 982 144 491 40 137.5

CHX Designs Heat Removal Capacity

Latent Sensible Total Number Req'd

Watts BTU/hr Watts BTU/hr Watts BTU/hr for Sortie Lab

Skylab 182 620 439 1500 621 2120 2

*Shuttle 498 1701 2454 8380 2952 10,081 1

*SSP 293 1000 2226 7600 2518 8600 1

*Estimated from best available data.
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latent loads. The only problem with this condition is the potential for condensa-
tion to occur on the cabin sensible heat exchangers and degrade their perform-
ance. An alternative is to provide a spare fan for on-orbit maintenance if
required. Condensate from the CHx will be stored for the duration of the 7-day
mission as a baseline design. The maximum quantity of condensate to be
stored is 56 kg (124 pounds).

The crew timeline from the communication/navigation payload was
utilized to generate typical cabin CO2 and humidity levels for the design refer-
ence model (Figure 63). The CO2 levels vary as the crew move between the
Shuttle and the Sortie Lab. When no crewmen are in the lab, the CO2 level
begins to decrease. CO 2 levels are always maintained below 3 mm Hg maxi-
mum and the average level over the mission is 1 to 2 mm Hg.

The water coolant supply temperature to the condensing heat exchanger
is 4.40C (400F). For this condition the cabin dew point temperature is controlled
at the desired level of 7 + 30C (45 + 50 F).

In summary, the selected design concept satisfies the design require-
ments. The total power and weight required for the CO2 removal and humidity
control function is 160 watts and 100 kg (220 pounds), respectively. The 160
watts includes the fan power and associated electro-mechanical valves for con-
densate collection.

C. Condensation, Collection, and Stowage

Four methods of collecting and stowing the condensate from the Skylab
wick-type condensing heat exchanger were studied. The wick-type air/water
separator was considered almost exclusively as a candidate because of previous
experience and designed qualified hardware as opposed to other alternative
units that exist only as analytical models.

1. Mechanical Pumping Methods. Of the four proposed collection and
stowage methods, two are very similar and operate on available space vacuum
to transport and store condensate. The other two methods used mechanical
pumping systems to achieve the same functions. One pumping method used a
motor driven pump. The pump requires a recirculating relief valve to control
the pump rise at 3.4 N/cm2 (5.0 psia) to pull a 3.4 N/cm 2 (5.0 psi) vacuum
on the water side of the condensing heat exchanger air/water separator plates.
Pressure control is required to prevent excessive pump suction from pulling
cabin air into the condensate system through the heat exchanger air/water
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Figure 63. Typical CO 2 and dew point temperature profiles
for design reference model.

separator plates. This concept was abandoned for lack of a known qualified
pump with associated hardware and unnecessary continuous power consumption.
A second pumping system that has qualified designed hardware used a cyclic
pumping accumulator as the pumping item. The accumulator was driven by

02 gas pressure taken from the 02 stowage bottles with the gas dumped to the
cabin after use. A spring pressure exerted against the accumulator bladder

113



during the suction cycle regulated the vacuum applied to the air/water sepa-

rator plates. This system was discarded due to potential high cost and system

mechanical complexity. Also, the gas discharge to the cabin could become

undesirable.

2. Space Vacuum Pumping Methods. Two space vacuum pumping

methods are shown in Figure 64 and Figure 65, with Figure 65 being the pre-

ferred system for Phase B studies. In Figure 64, a small tank is evacuated

to 3.4 N/cm 2 (5.0 psid) below cabin pressure to apply the required suction to

the air/water separator plates. When the small collection tank becomes

partly filled, its contents are transferred to the larger stowage tank which is

maintained at 4. 8 N/cm 2 (7. O0 psi) vacuum below cabin. The vacuum controller

monitors the rate of change of the 3.4 N/cm 2 (5.0 psi) vacuum in the collec-

tion tank to determine the rate of inflow into the tank. When the rate of pres-

sure change exceeds a preset rate, an air inleak into the condensate system
is indicated. Hence, the small collection tank serves as part of an air break-

through detection system. The complexity of this system was eliminated in

Phase B studies by installation of a potentiometric bubble detection system

taken from previous programs. This permitted considerable hardware and

controller simplification with a corresponding decrease in cost and complexity,

and an increase in reliability. In this latter concept only a single tank is

required for both condensate collection and stowage. The tank is controlled at

3.4 N/cm 2 (5. 0 psi) below cabin pressure.

D. Contaminant Control

Preliminary design of a contaminant control system for Sortie Lab has

been undertaken and is nearing completion. This design effort was precipitated

due to results of preliminary investigations which indicated that for currently

expected contaminants and generation rates, maximum allowable concentra-

tions (MAC's) of a significant number of toxic contaminants would be reached,

from zero concentration at launch, within a few hours thereby posing a threat

to the crew for even a seven-day mission. Five steps were involved in this

design and are described as follows:

1. Define contaminants that can be expected.

2. Determine initial concentrations and subsequent generation rates.

3. Obtain MAC's for each contaminant and class of contaminant

(fluorocarbon, hydrocarbon, etc.).
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4. Determine physical removal mechanisms for each contaminant
(water solubility, charcoal adsorbtion, etc.).

5. Size equipment and integrate the equipment into the overall ECS
design.

Each of these steps are discussed briefly in the following paragraphs.

1. Contaminants List. The contaminant list chosen for this study was
that supplied to Hamilton Standard by Johnson Space Center (JSC) for design
of the Space Station Prototype (SSP) Life Support System (Table 21). This
list was chosen for two basic reasons. First, of eight reference lists examined,
the SSP list was the most comprehensive (150 contaminants) of any studied,
and secondly, it was felt that a comprehensive list such as this would be re-
quired in that commercial, off-the-shelf experiment and experiment support
equipment would be used extensively in Sortie Lab.

2. Initial Concentrations and Generation Rates. Two cases have been
assumed for the initial concentration of the contaminants: no contaminants
and all contaminants at MAC levels. These assumptions yield the extremes
with respect to equipment size and provide a measure of the sensitivity of
equipment size to initial concentrations. Very rough calculations have indicated
that the zero initial concentrations reduce required removal capacity by 44
percent relative to initial concentrations at MAC levels. For the above stated
reason this preliminary design has been made, based upon zero initial con-
taminant concentration at the beginning of the mission.

The generation rates given in the SSP data include biological and non-
biological components. The overall quality of the nonbiological rates are
indicated by the fact that about 30 percent are given as 2. 5 g/day and 70 per-
cent are given as 0. 25 g/day. Only two contaminants, methane and acetone,
have nonzero, nonbiological generation rates differing from these two values.
The nonbiological rates for methane and acetone are 29. 5 g/day and 10. 2
g/day, respectively. Only four of the contaminants have significant biological
generation rates relative to the corresponding nonbiological rates. These
contaminants are ammonia, pyuvic acid, phenol, and methane.
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TABLE 21. CONTAMINANTS OF CONCERN FOR THE SORTIE LAB

DATA CODE

A Non-biological generation rate code.

1 0. 25 g/day

2 2. 5 g/day

3 10.2 g/day

4 0.0 -g/day

5 29.5 g/day

B Days to reach MAC (no control).

C Total generation rate (g/day).

D Maximum Allowable Concentration (MAC).

E Required removal efficiency - flow rate product (cfm).

CONTAMINANT A B C D E

Acetone 3 1.75 10.2 240 1.04

Acetaldehyde 2 1.08 2.5 36 1.36

Acetic Acid 1 0.75 0.25 2.5 2.45

Acetylene 2 5.38 2.50 180 0.27

Acetonitrile 1 2. 08 0. 25 7 0. 88
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TABLE 21. (Continued)

CONTAMINANT A B C D E

Acrolein 1 0.75 0.25 0.25 24.5

Allyl Alcohol 1 0.15 0.25 0. 50 12.5

Ammonia 2 0. 05 5. 50 3. 5 38. 6

Amyl Acetate

Amyl Alcohol

Benzene 2 0.24 2.50 8 7.70

N- Butane 2 5.38 2.50 180 0.34

Is o- Butane

Butene-1 2 5.38 2.50 180 0.34

Cis- Butene- 2

Trans-Butene-2 2 5.38 2. 50 180 0.34

1,3 Butadiene 2 6. 57 2.50 220 0.28

Iso- Butylene

N-Butyl-Alcohol 2 0. 90 2. 51 30 2. 05

Iso- Butyl-Alcohol

Sec- Butyl-Alcohol

T ert- Butly-Alcohol

Butyl Accetate

Butraldehydes

Butyric Acid 1 4.18 0. 25 14 0.44

Carbon Disulfide 1 1.79 0.25 6 1.02
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TABLE 21. (Continued)

CONTAMINANT A B C D E

Carbon Monoxide 2 0.87 2.60 29 2.19

Carbon Tetrachloride 1 1.94 0.25 6.5 0.94

Carbonyl Sulfide

Chlorine 1 0.34 0.25 1.5 4.08

Chloroacetone

Chlorobenzene

Chlorofluoromethane

Chloroform 2 0. 72 2. 50 24 2. 55

Chloropropane

Caprylic Acid

Cumene

Cyclohexane 2 2.99 2.50 100 0. 613

Cyclohexene

Cyclohexanol 1 5.97 0.25 20 0.31

Cyclopentane

Cyclopropane

Cyanamide

Decalin 1 1.49 0.25 5.0 1.23

1, 1 Dimethyl
Cyclohexane

Trans 1, 2 Dimethyl
Cyclohexane
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TABLE 21. (Continued)

CONTAMINANT A B C D E

2, 2 Dimethyl Butane

Dimethyl Sulfide 1 4.48 0.25 15 0.41

1,1 Dichloro Ethane 2 1.19 2.50 40 1.53

1,1 Dichloro Ethane

Di-Iso-Butyl Ketane

1,4 Dioxane 2 1.07 2.50 36 1.70

Dimethyl Furan 1 0. 89 0. 25 3 2. 04

Dimethyl Hydrazine 1 0. 03 0. 25 0.1 61.5

Ethane 2 5.38 2.50 180 0.34

Ethyl Alcohol 2 5. 61 2. 53 190 0. 33

Ethyl Acetate 2 4.17 2.50 140 0.44

Ethyl Acetylene

Ethyl Benezene

Ethylene Dichloride

Ethyl Ether 2 3.57 2.50 120 0. 51

Ethyl Butyl Ether

Ethyl Formate 2 0. 90 2. 50 30 2. 04

Ethylene 2 5.37 2.50 180 0.34

Ethylene Glycol
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TABLE 21. (Continued)

CONTAMINANT A B C D E

Trans 1, Methyl 3
Ethyl Cyclohexane

Ethyl Sulfide

Ethyl Mercaptan 1 0.75 0.25 2.5 2.45

Freon 11

Freon 12

Freon 21

Freon 22

Freon 23 1 3.58 0.25 12 0.51

Freon 113

Freon 114

Freon 114 (unsym)

Freon 125

Formaldehyde 1 0.18 0.25 0.6 10.2

Furan

Furfural 1 5.96 0.25 2 3.06

Hydrogen 2 6.42 2.65 215 0.30

Hydrogen Chloride 1 0.04 0.25 0.15 41.0

Hydrogen Fluoride 1 0. 02 0. 25 0. 08 76. 7

Hydrogen Sulfide

Heptane
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TABLE 21. (Continued)

CONTAMINANT A B C D E

Hexene-1

N-Hexene 2 5. 38 2. 50 180 0. 34

Hexamethylcyclo-
Trisilohexane

Indole

Isoprene

Methylene Chloride 2 0. 63 2. 50 21 2. 92

Methy Acetate 2 1.83 2.50 61 1.01

Methy Butyrate

Methy Chloride 1 6.28 0.25 21 0.29

2-Methy-1 Butene

Methyl Chloroform 2 5. 68 2. 50 190 0. 32

Methyl Furan 1 0. 89 0. 25 3 2. 04

Methyl Ethyl Ketone 2 1. 76 2. 50 59 1. 04

Methyl Isobutyl Ketone

Methyl Isopropl Ketone 2 2. 09 2. 50 70 0. 09

Methyl Cyclo Hexane

Methyl Acetylene

Methyl Alcohol 2 0. 77 2. 53 26 2. 38

3-Methyl Pentane

Methyl Methacrylate
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TABLE 21. (Continued)

CONTAMINANT A B C D E

Methane 5 4. 22 31.3 1720 0.44

Mesitylene 1 0.75 0.25 2.5 2.45

Mono Methyl
Hydrazine 1 0.01 0.25 0. 035 175

Methyl Mercaptan 1 0. 60 0. 25 2 3. 06

Napthalene 1 1.50 0.25 5.0 1.23

Nitric Oxide

Nitrogen Tetroxide 1 0.54 0.25 1.8 3.4

Nitrogen Dioxide 1 0. 27 0. 25 0. 9 6. 82

Nitrous Oxide

Octane

Propylene 2 5.37 2.50 295 0. 34

Iso- Petane

N- Pentane

Pentene- 1

Pentene- 2

Propane 2 5.36 2.50 180 0.34

N-Propyl Acetate

N-Propyl Alcohol 2 2. 24 2. 50 75 0. 82

Iso-Propyl Alcohol 2 2. 93 2. 50 98 0. 63

N-Propyl Benzene
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TABLE 21. (Continued)

CONTAMINANT A B C D E

Iso-Propyl Chloride

Iso-Propyl Ether

Proprionaldehyde

Propionic Acid 1 4.48 0.25 15 0.41

Propyl Mercaptan

Propylene Aldehyde 1 2. 98 0. 25 10 0. 61

Pyruvic Acid 4 0.12 1.13 0.9 30. 8

Phenol 1 1.08 1.38 1.9 17.8

Skatol

Sulfur Dioxide 1 0. 24 0. 25 0. 8 7. 65

Styrene

Tetrachloroethylene

Tetrafluoroethylene

Tetrahydrofurane

Toluene 2 2.24 2.50 75 0.82

T richloroethylene

1, 2,4 Tri Methyl Benzene

1, 1,3 Tri Methyl
Cyclohexane

Valeraldehyde

Valeric Acid
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TABLE 21. (Concluded)

CONTAMINANT A B C D E

Vinyl Chloride 2 3. 88 2. 50 130 0.05

Vinyl Methyl Ether

Vinyldene Chloride 1 5. 96 0. 25 20 0. 31

O-xylene 2 1.31 2.50 44 1.40

m-xylene 2 1.31 2.50 44 1.40

p-xylene 2 1.31 2.50 44 1.40
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3. Maximum Allowable Concentrations. MAC's are established by
members of the medical profession who are familiar with toxicology. However,
it is felt that the SSP MAC's should be conservative for Sortie Lab since the
values were established for continuous exposure on missions of much longer
duration.

4. Physical Removal Processes. The physical removal processes
which will be utilized in the Sortie Lab contaminant removal system are ad-
sorption, absorption and, as a recommendation, catalytic oxidation for control
of carbon monoxide (CO), hydrogen (H 2), and methane (CH 4). No absorption
or adsorption process has been discovered with a capacity great enough to
remove these three contaminants from the Sortie Lab atmosphere. The SSP
catalytic oxidizer (CO) design has been chosen for the Sortie Lab contaminant

control system. Table 22 contains basic design parameters of this system.
The difference between these parameters and those adjusted for Sortie Lab
contaminant loads amounts to a six-percent reduction in bed size. It was felt
that this small difference did not warrant new design effort.

It is necessary to abbreviate the contaminant list as much as possible
to reduce the number of specific control problems encountered. For the seven
days mission length being used as a baseline for Sortie Lab, it happens that
some 76 of the contaminants do not reach MAC levels in times short enough to
be of concern. Thus, the first shortening of the contaminant list will involve
the deletion of these 76 contaminants from subsequent detail treatment. Rather,
these 76 will receive a bulk treatment, in that beds will be sized to accommodate
the total generation rate of these 76 contaminants which is 27. 13 g/day.

The remaining 74 contaminants of concern are listed in Table 21 which
includes the non-biological generation rates (in code), total generation rates,
MAC's, times to MAC (with no control), and the required processing rates.
The 76 contaminants of less concern are listed for reference purposes, but no
data are given for these substances.

The next abbreviation of the contaminant list is a callout of the contam-
inants requiring processing rates greater than the 0. 06 m3/min (2. 22 cfm)
required for CO. These 24 contaminants are listed in Table 23 in order of
increasing flow rate requirements which are seen to range from the lower cut-
off value of 0.06 m3/min (2.22 cfm) for CO up to 5.0 m3/min (175 cfm) for
Monomethyl Hydrazine. The total generation rate for these high flow con-
taminants is 24. 6 g/day. The significance of this table is that a trade-off of
COx flow versus the use of charcoal need only involve this flow range and these
particular contaminants.
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TABLE 22. BASIC DESIGN PARAMETERS FOR THE CATALYTIC OXIDIZER

FOR THE SPACE STATION PHOTOTYPE

FOR A FLOW RATE OF 10 CFM

Catalyst Units 0. 5% Pd on Al 2 03 20% Pd on Af 2 03

Contact Time sec 1. 252 1. 950

Required Catalyst m 3  0. 006* 0.009*

Volume. ft3  0. 210* 0. 325*

Catalyst Mesh Size 6 to 10 6 to 10

Contaminant Removal 205/ 205/

Rate (g day- /g-mole day- ) 8. 60 8. 60

Bed Frontal (Flow) m 2  0. 033 0. 033

Area ft2  0.35 0.35

Operating Temperature 0 C 304 304
0 F 580 580

cm 24.1 24.1
Axial Flow Length in. 9. 5 9. 5

Bed 
-

cm 20.3 20.3
Dimensions Diameter in. 8. 8. O

in. 8.0 8.0

Pressure Drop (H 2 O) cm 17.0 17.0

in 6.7 9.7

*Average of "starred" values used for bed size dimensions.
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TABLE 23. ABBREVIATED SORTIE LAB CONTAMINANT LIST:

CONTAMINANTS REQUIRING FLOWS GREATER THAN

THAT FOR CO

Contaminant (nQ) Required SSP MAC Days to Contaminant
Generation ( ng/m :i) Reach Short Code

Rate MAC Number

m 3/min cfm (g/day)

Carbon Monoxide 0. 063 2.22 2. 60 29. 0 0. 87 1

Methyl Alcohol 0.067 2.38 2. 53 26. 0 0. 77 2

Acetic Acid 0. 069 2.45 0.25 2.5 0.75 :

Ethyl Mercaptan 0.069 2.45 0.25 2.5 0.75 4

Mesitylene 0.069 2.45 0.25 2.5 0.75 5

Chloroform 0.072 2. 55 2. 50 24.0 0. 72 6

Methylene Chloride 0.083 2.92 2.50 21.0 0. 6: 7

Fufural 0.087 3.06 0.25 2.0 0.60 8

Methyl Mercaptan 0.087 3.06 0. 25 2.0 0. 60 9

Nitrogen Tetroxide 0.096 3.40 0.25 1.8 0. 54 10

Chlorine 0.116 4.10 0.25 1.5 0.34 11

Nitrogen Dioxide 0.178 6.82 0.25 0.9 0.27 12

Benzene 0.218 7.70 2.50 8. 0 0.24 13

Sulfur Dioxide 0.218 7. 70 0.25 0. 80 0.24 14

Formaldehyde 0.289 10.2 0.25 0. 60 0.18 15

Allyl Alcohol 0.345 12.3 0.25 0.50 0.15 16

Phenol 0.504 17.8 1.38 1.90 0.11 17

Acrolein 0.694 24.5 0.25 0.25 0.075 18

Pyruvic Acid 0.872 30.8 1.13 0.90 0. 060 19

Ammonia 1.093 38.6 5. 50 3. 50 0.04 7 20

Hydrogen Chloride 1.161 41.0 0.25 0. 15 0.04 5 21

Dimethyl Hydrazine 1. 741 61.5 0.25 0.10 0. 030 22

Hydrogen Fluoride 2.172 76.7 0.25 0.08 0.024 23

Monomethyl Hydrazine 4.955 175.0 0.25 0.035 0.010 24
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The total contamination generation rates and the number of contaminants

in each flow rate/time to MAC range are summarized in Table 24 for reference

purposes.

TABLE 24. SUMMARY OF GENERATION RATES AND FLOW RANGES.

Required Days Total
Processing Flow Generation

to Number Generation
Range MA C of Rate

m3/min cfm (No Control) Contaminants (g/day)

<0.007 <0. 255 >7 76 27.1

0. 007 to 0. 063 0. 225 to 2.22 0.87 to 7 50 126.4

>0.063 >2.22 <0.87 24 24.6

Totals 150 178. 1

5. Integrated Removal Mechanisms. In addition to the CO x , there will

be at least three other removal methods required for the Sortie Lab. Two of

these three methods are inherent in the design of the Environmental Control

System (ECS) for the Lab. These two methods are the absorption of contam-

inants onto the wetted surface of the Condensing Heat Exchanger (CHx) and the

removal of certain contaminants in the LiOH beds intended for CO 2 control.

The third method of control will be a CuSO4 (Copper Sulfate) coated silica gel

bed for ammonia control. The baseline lab ECS system employs two Skylab

type CHx's at 1. 3 m 3/min (45 cfm) each and two LiOH beds at 0. 3 m 3/min

(10 cfm) each. It is understood that normal operations will involve using only

one of the paired devices for both the CHx's and the LiOH beds. Thus, for

water absorption and LiOH adsorbtion the available processing flows are

1.3 m3/min and 0. 3 m3/min (45 cfm and 10 cfm), respectively. However,

these values are not necessarily indicative of the efficiency-flow rate products

(nQ) available for any given contaminant.

Generally, the removal of water soluble contaminants in the CHx will

be at efficiencies significantly less than 100 percent. The actual efficiency

will be estimated for particular contaminants of concern. A guess at this time

is that the removal efficiency of a contaminant adsorbed by LiOH will approach

100 percent in the LiOH beds. However, this is just an estimate and will re-

quire verification. Typically, beds as such will have near 100 percent effi-

ciency. Since the ammonia removal system will be designed to remove the

expected loads it will have a design point nQ of 1. 1 m3/min (38.6 cfm) as

shown in Table 23. The nQ of this method for other contaminants may be

different.
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It should be noted that the pre- and post-sorbent beds in the COx flow
stream will provide some measure of control. These beds serve to prevent
poisoning of the COx and to scrub the gas exiting the COx of any undesirable
products of oxidation. The pre-sorbent beds (in the order of LiOH then CuSO4
silica gel) will be included in the accounting of overall removal capacity. How-
ever, the down stream bed (LiOH) will not be included and will be viewed as
an independent capacity for whatever is generated in the COx. As a conse-
quence of this 0. 3 m 3/min (10 cfm) flow, the nQ of the primary ammonia
control bed can be reduced to 0. 8 m 3/min (28.6 cfm).

These various removal mechanisms are summarized in Table 25. It
is seen that all of the methods discussed are available to the 10 cfm level,
three are available to the 0. 6 m 3/min (20 cfm) level, and two available at
about the 40 cfm level. As noted in the title of Table 25, these methods are
regarded as the minimum requirement for toxic gas control for the Sortie Lab.

The procedure for evaluating the situation for the 10 gases requiring
more that 0. 3 m3/min (10 cfm) is to compare each control process with this
list of 10 substances. The comparisons are given in the following sections of
the report.

a. Water soluable gas control. Table 26 summarizes analytical
data generated in an attempt to determine water absorption characteristics of
the remaining ten high flow rate contaminants. Attention is directed to the
column entitled "water condensation rate required for control (#M/HR)."

Assuming that all of the condensate is metabolic in origin would indicate
that a reasonable expectation for the condensation rate for the Sortie Lab would
lie in the range of 0. 2 to 0. 7 kg/hr (0. 50 to 1. 50 lbm/hr). Therefore, it is
felt that only pyruvic acid, phenol, and possibly allyl alcohol will be controlled
by the condensing heat exchanger (one Skylab type unit was considered operative
here).

b. Basic gas control. Even though the sorbent bed containing CuSO4
coated silica gel is intended primarily for ammonia control some of the remain-
ing high flow contaminants can at least be partially controlled in this bed. Gases
which should be chemisorbed by this bed in addition to NH 3 include formaldehyde,
phenol, monomethyl hydrazine, and dimethyl hydrazine.

From Table 23 it is seen that formaldehyde and phenol rank below NH 3
in process flow requirements. However, it is seen that the processing rate
for ammonia falls short of the 1. 7 m 3/min (61. 5 cfm) required for dimethyl
hydrazine and far short of the 5. 0 m3/min (175 cfm) for monomethyl hydrazine.
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TABLE 25. MINIMUM CONTAMINANT REMOVAL SCHEMES FOR THE SORTIE LAB

Target Removal Maximum n Q Typical Gas

Contaminant Mechanism Available Controlled

Gases m 3/min cfm By Mechanism

Acidic LiOH Adsorbtion 0.57 20 SO 3

Basic CuSO 4/Silica Gel 1.08 38 NH 3

Oxidizable Catalytic Oxidizer 0.28 10 CO

Soluble Skylab Condensing Heat Exchanger 1.27 45 Pyruvic Acid



TABLE 26. SUMMARY OF ANALYSIS OF CONTAMINANT REMOVAL BY THE CONDENSING HEAT EXCHANGER
(FLOWS GREATER THAN 10 CFM)

Contaminants Short Code 3 Estimated Removal Rate: Water Condensation Temperatures
Number Absorption* Grams Removed per Pound Rate Required for Data Given

Parameter of Water Condensed x 106 for Control
(Dimensionless) (10 - 6 g/lbm) kg/hr lbm/hr ° C ° F

Formaldehyde 15 0.02 1 68.9 152 20 68

Allyl Alcoholo 16 0.08 9,400 0.50 1.11 25 77

Phenol+o 17 0.21 252,000 0.10 0.23 16 61

Acrolein 18 0.03 200 19.5 43 25 77

Pyruvic Acid+o 19 5.4 < 0. 725** 0.045 0.10 20 68

Ammonia 20 0. 03 176 590 1,300 20 68

+
Hydrogen Chloride 21 9. 0 x 10 - 5  2 3130 6,900 0 32

Dimethyl Hydrazine 22 0.009 366 12. 7 28 25 77

Hydrogen Fluoride 23 0.005 60 . 5 17: 20 6b

+
Monomethvl Hyclrazine 24 0.04 353 1:. 6 30 25 77

-Based on water condensation rate of 0.34 kg/hr (0.75 lbm/hr).
- Pyruvic acid removal rate is in units of g/day assuming use of one Skylab condensing heat exchanger.
-Identified as soluble under SSP conditions by 11-S.
oCan be removed by condensing heat exchanger.



It would be possible to simply consider a larger bed size and flow rate.

However, at 5. 0 m 3/min (175 cfm) for the 2. 54 or 5. 08 cm (one or two inches)
of bed required, the pressure loss would be on the order of 10. 2 cm (4 in.) of
water, which implies a 100-W fan.

c. Acid gas control. At this point in the definition of the trace
contaminant control system there are only three of the high flow gases which

have not had a potential removal mechanism identified. These gases are

acrolein, hydrogen chloride, and hydrogen fluoride which require 0. 7, 1. 2,
and 2. 2 m 3/min (24. 5, 41. 0, and 76. 7 cfm), respectively. Fortunately, all

of these gases are essentially acidic in nature and will probably be removed

by LiOH. However, the 0. 57 m 3/min (20 cfm) through the presorbent bed in

the COx stream and the CO 2 control bed is insufficient to provide complete
conceptual removal.

6. Summary. In summary, the minimum contaminant removal schemes

described above and in Table 25 do not provide sufficient capacity to remove all

contaminants described in the Space Station Prototype list. Six of the contam-
inants listed received only partial removal with the design suggested. If this

design recommendation is compromised, the list will increase significantly.
There is, at present, no way to know what the contaminant spectrum in Sortie

Lab could be and what generation rates could be expected. The use of off-the-

shelf equipment, with its necessarily loose materials control program, puts

the entire analysis outlined above in the not very educated guess category. No
definite statement can be made regarding the completeness, correctness, or

reality of the SSP contaminants list when applied to this program.

Immediate, comprehensive effort is required to establish, experimentally,
a complete and realistic contaminant list which could be utilized as a design tool
for this and future programs.
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SECTION VI. SHUTTLE ECS RESOURCE UTILIZATION

The Shuttle ECS provisions for payloads was investigated in the Sortie

Lab studies. The potential fluid interfaces between the two spacecraft include

(a) high pressure gas line (0 2/N 2) for represurization, (b) air ducts for

atmosphere revitalization and (c) coolant lines for thermal control. The

overall goal of these studies is to maintain a simple interface with the Shuttle

to minimize integration costs while providing a useful resource for the Sortie

Lab.

A. Heat Rejection

The primary thermal control interface between the Shuttle and the

Sortie Lab is through a payload heat exchanger located in the orbiter radiator

circuit. The objective of the Sortie Lab using any available heat rejection

capability for the orbiter is to reduce the Sortie Lab program cost by eliminat-

ing (or possibly simplifying) the payload radiator design and development. The

baseline Shuttle design presented several interfaces that were incompatible with

payload requirements. These were total heat rejection available, payload

coolant temperatures available, required payload coolants and associated flow

rates. The baseline location of the Shuttle/payload heat exchanger is given in

Figure 66. The payload heat exchanger is in series with the Shuttle cabin

interface heat exchanger. Therefore, the Shuttle cabin thermal loads dictate

coolant supply temperature (T2 ) to the payload heat exchanger. The expected

temperature variations are T 2 = 32+ 16. 70 C (90 + 300F). This coolant supply

temperature was unacceptable to provide adequate temperature control in the

lab. Also, the total heat rejection available was 1 kW (nominally) for a Shuttle

electrical power generation greater than 8 kWe and 3.3 kW for a Shuttle elec-

trical power generation less than 8 kWe. Even with an acceptable coolant

supply temperature the total heat rejection available is not enough and would

require the Sortie Lab to have a radiator. A proposal was submitted to the

Shuttle program manager (Level II change board) to assess and recommend

the changes and/or operational constraints necessary for the orbiter heat re-

jection system to satisfy all or a portion of the Sortie Lab heat rejection re-

quirements using the following guidelines:
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CFigure 66. Shuttle/payload thermal control interface.



1. Sortie Lab Heat Rejection Requirements (kW)

Mission Phase Average Peak

Pre-Operational (Pre-Launch, Boost, On-Orbit, 1.0 1. 5
Doors Closed)

Operational (On-Orbit, Doors Open) 8. 5 8. 5

Post-Operational (On-Orbit, Door Closed, 1.0 1. 5
Reentry)

2. Provide a 4.4 C (400 F) fluid supply temperature to the payload
heat exchanger for all mission support phases. Payload coolant temperature
available = 4.4 to 7. 20 C (40 to 45 0 F).

3. The preferred coolant on the payload side of the interface is Freon-
21 (water may be traded against this baseline). Coolant flow rate require-
ments on payload side of interface shall be determined by design of Shuttle
payload heat exchanger. Freon flow of 910 to 1365 kg/hr (2000 to 3000 lb/hr) is
desired.

4. The use of an expendable heat sink (such as water, ammonia, Freon)
to reject the payload waste heat should be avoided because of potential experi-
ment contamination.

5. It should be generally assumed that the Sortie Lab is not deployed
from the payload bay, but maintains a fixed location in the bay. As a delta
evaluation, the impact of providing thermal control for an attached but deployed
lab should be assessed.

The level II board accepted the request for study. The impact on
orbiter design and the required payload interfaces are still under study. Typ-
ical data needed by the Sortie Lab for designing to the Shuttle/payload heat
exchanger is illustrated in Figure 67. These data would be required for each
potential payload coolant interfacing with the Shuttle heat exchanger.

B. Life Support

There are many interfaces issues between the Shuttle orbiter cabin and
the Sortie Lab associated with a decision for atmosphere exchange. These
issues are discussed after a summary of the proposed Shuttle baseline design
is reviewed. The Shuttle is proposing to provide 1.4 m 3/min (48 ft3/min) of
revitalized air to the pressurized Sortie Lab module (Figure 68). The exact
mechanical interfaces are under study (for example, a drag-in supply duct

136
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PAYLOAD COOLANT INLET TEMPERATURE, OC (OF)

Figure 67. Shuttle/payload heat exchanger performance data.

with open hatches between the cabins versus supply and return ducts with hatches

open or closed). The anticipated lab environment for this processing concept is

given in Table 27. The Sortie Lab would have humidity levels higher than de-

sired for optimum lab air temperature control. To avoid condensation on Sortie

Lab air heat exchangers, the maximum allowable liquid coolant temperatures

would be 18. 3°C (650F) for four crewmen in the lab, 13. 30C (56°F) for two

crewmen in the lab. Unless the Sortie Lab reduced its thermal design capa-

bilities, these high dew point temperatures are considered unacceptable.

A comparison of weight/power requirements for a Shuttle dependent

versus a Sortie Lab provided life support system was made (see Tables 28 and
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PROPOSED SUPPORT FUNCTIONS

- ATMOSPHERE TOTAL PRESSURE CONTROL

- OXYGEN PARTIAL PRESSURE CONTROL SHUTTLE CABIN
- CO 2 REMOVAL

- HUMIDITY CONTROL
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Figure 68. JSC concept for payload ECS support.



TABLE 27. SHUTTLE/PAYLOAD ATMOSPHERE EXCHANGED INTERFACES

Shuttle Provided Capabilities to Payload

Parameter Sortie Lab Reqmt's Supplied to Payload Operating Conditions

Payload 2 Crewmen 4 Crewmen

Total Pressure 10.1 ± 0.14 N/cm 2  10.1 ± 0.14 N/cm2  10.1 x 0.14 N/cm2  10.1 * 0.14 N/cm2

(14.7 ± .2 PSIA) (14.7 ±. 2 PSIA) (14.7 .2 PSIA) (14.7 ±. 2 PSIA)

Oxygen Partial 2.1 ± 0.07 N/cm 2  2.1 ± 0.07 N/cm2  2.1 ± 0.07 N/cm 2  2.1 ± 0.07 N/cm 2

Pressure (3.1 ± .1 PSIA) (3.1 ± .1 PSIA) (3.1 ± .1 PSIA) (3.1 ± .1 PSIA)

CO 2 Partial - Normal Operation 1 - 2 MM HG 1. 5 - 2.5 MM HG 2 - 3 MM HG

At 3 MM HG or less

- Maximum Level 7. 6
MM HG

Dew Point - Normal Operation of - Normal 11.1 - 12. 80 C 15. 6- 17. 80 C

Temperature 7. 2 ± 2. 8C (45 ± 5° F) 10. O 2. 8C 52 - 550F) (60 - 64- F)

(50 ± 50 F)

Trace Contami- TBD TBD

nants

Particulate - Nominal Class TBD

Filteration 100,000



TABLE 28. SPACELAB EC/LS WEIGHT/POWER REQUIREMENTS (6 CREWMENT/7 DAYS)

Shuttle Provided/
Concept/Function Payload Chargeable Spacelab Provided Total Payload Req'mt

kg lbs Power(W) kg lbs Power(W) kg lbs Power(W)

Dependent Atmosphere
Revitalization

Atmosphere 2-Gas Control 83.5 184
and Supply

- Metabolic 02 11.8 26 -
- Leakage Make-up (0 2 /N 2 ) 9. 5 21 -
- Airlock Useage (O2/N 2 ) 20.4 45 -
- *Tankage (Gaseous N2) -- 41.7 92 -

SCO2 Removal 25.4 56 -

- LiOH Canisters 25.4 56

. Humidity Control 51.3 113 45

- Condensing HX 17.7 39
- Condensate Collection 28.6 63
- Fan 5.0 11 45

* Air Exchange 55.3 122+ 90

- Ducting TBD - 45.4 100 -
- Valves TBD - TBD -
- Fans -- - 10.0 22 90

Total 67.1 kg+ 148+ -- 148.3+ 327+ 135 215.5 475+ 135

-Assumes No 02 Tankage Required. Fuel Cell 02 Utilized.



29). Assuming the lab provided its own humidity control, the maximum weight
savings envisioned for the Shuttle dependent concept is 24 kg (53 lbs). Ap-
proximately 15 watts more is required for the dependent concept than the
independent. If the Shuttle humidity control levels were acceptable, the total
weight/power savings to lab is 75. 3 kg (166 lb)/30 watts.

Several major issues associated with a decision for Shuttle, orbiter/
Sortie Lab atmosphere exchange need resolving. These are

* Cabin contamination control
* Open and/or closed hatches between cabins
* Operational aspects of EVA and rescue
* Tunnel design between cabins
* Spacelab design requirements
* Assessment of C. G./weight constraints
* Pre-flight testing required for interface verification
* Cost

1. Cabin Contamination Control. The Sortie Lab materials control
program is not envisioned to be as vigorous as the Shuttle orbiter. If contam-
ination does occur in the lab, transfer of the contamination to the orbiter (a
safe refuge area) will occur with atmospheric exchange. In the Shuttle pro-
gram, a Skylab type materials control program is applied to all equipment
located in the crew compartment. Basically this is a fixed, unchanging amount
of cabin equipment that has to be evaluated only once. Special air cooled
compartments or bays are located outside of the Shuttle cabin area and are
designed to incorporate all equipment not compatible with the cabin materials
control program. The majority of equipment in these compartments is avionics
(off-the-shelf) operating at high ambient air temperatures 37. 8 - 54.4 0 C (100 -
130OF). Access to the equipment during a mission is not required. The com-
partments are designed to leak overboard at a controlled rate and are maintained
at a constant pressure differential 0. 28 N/cm2 (0.4 psid) below the cabin pres-
sure to preclude avionics generated trace contaminants from migrating into the
Shuttle cabin. Sortie Lab currently has no such provisions but does envision
a systematic approach to contaminant control.

The first step is to develop a laboratory equipment specification document
that experimenters can use for screening off-the-shelf equipment with potential
contamination problems. This is required because a variety of laboratory equip-
ment will be associated with each payload discipline and a considerable amount
of this could be commercial equipment. Since a contamination evaluation test
is not envisioned for each Sortie Lab payload, some means of screening equip-
ment is required. The second step is to provide an optimum equipment cooling
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TABLE 29. SPACELAB EC/LS WEIGHT/POWER REQUIREMENTS (6 CREWMEN/7 DAYS)

Shuttle Provided/
Concept/Function Payload Chargeable Spacelab Provided Total Payload Req'mt

kg lbs Power(W) kg lbs Power(W) kg lbs Power(W)

Independent Atmosphere
Revitalization

" Atmosphere 2-Gas Control 0.0 0.0 0.0 157.8 348 30
and Supply

- Metabolic 02 Assumes 4 Crewmen 11. 8 26 -
- Leakage Make-up (0 2/N 2) Spend 12 hrs/day in 9.5 21 -
- Airlock Useage (O 2/N 2) Spacelab. 20.4 45 -
- Tankage (Gaseous 0 2/N 2) 83.5 184 -
- Regulation/Controls 32.7 72 30

. CO 2 Removal 30.4 67 45

- LiOH Canisters 25.4 56 -
- Fan 5.0 11 45

" Humidity Control 51.3 113 45

- Condensing HX 17.7 39 -
- Condensate Collection 28.6 63 -
- Fan 5.0 11 45

TOTAL 0.0 0.0 0.0 239.5 528 120 239.4 528 120



design (air conditioning primarily) by providing low temperature air, 15. 6-

37. 80 C (60-1000 F) to minimize outgassing. The lab design should provide
reasonable access to equipment and maintain flexibility for integration options.

The last step is to provide a contamination control and monitoring system based

on contaminants most likely to occur in cabin. If any problem still occurs on-

orbit, the crew can use the orbiter as a safe retreat for mission termination.

2. Open and/or Closed Hatches Between Cabins. There will be three

to four hatches between the orbiter cabin and the Sortie Lab cabin depending on
the requirement to carrying a docking module (Figure 69). The safety impli-
cations of operating on-orbit with a closed hatch between the cabins has not been

thoroughly evaluated. The interaction of two, independent 2-gas control systems

was discussed in Section V,A, for the open hatch operation with present
designs. Modification of the Sortie Lab baseline design is proposed to eliminate

this problem. The possible diffusion of contaminants has not been evaluated for

open hatch operation. For either open or closed hatches, supply and return

ducts are required for atmosphere exchange. With open hatch operation, the
tunnel and airlock would serve as a return duct. If a crewman has to install a

drag-in duct on-orbit, the operational aspects of this open hatch operation would

also have to be evaluated.

3. Operational Aspects of EVA and Rescue. The method of providing
operational EVA from the Shuttle during a Sortie Lab mission is still unresolved.

If the docking adapter is used, the impact of the vacuum conditions on atmosphere
exchange designs must be evaluated. Ducting routing is required for minimum
interference with EVA, and the possibility of crewmen being in the lab during

EVA should be assessed. Similarly, a rescue mode of Shuttle crewmen during

Sortie Lab missions must be established and its impact on atmosphere exchange
designs evaluated.

4. Tunnel Design Between Cabins. In satisfying the Shuttle/payload
center of gravity constraints, a tunnel 3. 0 to 12. 2 m (10 to 40 feet) between the

two cabins is required for crew access to Sortie Lab. The final tunnel design

will be impacted by any atmosphere exchange required between the two cabins.
For example, the air duct diameters required for air flow will affect clearance

space in the tunnel, if located inside the tunnel. The attachment of ducting and
fans could influence whether the tunnel is flexible or rigid. Also, the tunnel

conditioning requirements for crew usage, EVA or rescue are still under study.

5. Sortie Lab Design Requirements. It should be noted that the proposed
Shuttle air flow and associated humidity levels in the lab are not compatible with

the desired normal levels. If these high levels are imposed on the cabin thermal
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designs, less than optimum air temperature control is available in the lab. The
impact of changing or unforeseen experiment requirements on the ECS is pos-
sible. Impacting the Shuttle designs could be more expensive than the same
requirement imposed on a Sortie Lab.

6. Assessment of Center of Gravity/Weight Constraints. As noted
earlier, no overall weight savings is envisioned for Sortie Lab life support
provided by Shuttle. The location of consumables in the forward end of the
Shuttle could impact the C. G. considerations (especially for 30-day missions).
The C. G. advantages of reducing payload chargeable weights in the Shuttle
cockpit should be evaluated.

7. Pre-Flight Testing Required for Interface Verification. The require-
ments for pre-flight testing to verify interfaces between the two cabins for each
mission need to be defined. This could affect ground-turn-around time of the
Shuttle for Sortie Lab missions.

8. Cost. Cost is a consideration for all of the above issues. It is dif-
ficult to assess total cost for a dependent versus an independent life support
system for Sortie Lab without resolution of these issues.
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SECTION VII. ECS ACCOMMODATIONS FOR EXPERIMENTS

Although some discussion of experiment accommodations was discussed
in Section II, Environmental Control Systems, specific accommodations are
reviewed in this section.

A. Thermal Control

The ECS is designed for maximum flexibility of experiment equipment
with available thermal control. The rationale of the study has been to have all
equipment accommodated by the electrical power subsystem also accommodated
with heat rejection capability. The resources planned for the following capa-
bility and characteristics for experiments:

Thermal Control Allowable Experiment Thermal Loads
Resource Available Module Pallet

Maximum Heat Rejection 4 to 5 kW 1 kW
(Average per Orbit)

Air Cooling
- Cabin Circuit 21.1 - 5.6 C 1 kW N/A
(70 ± 10aF)

- Racks 23. 9 to 40. 6C 3 to 4 kW
(75 to 105°F)

Cold Plates 7.2 to 30 C 4 to 5 kW 1 kW
(45 to 86 F)

The cabin thermal design is oriented toward primarily air cooling of
equipment rather than cold plates. If requirements are identified, cold plates
can be integrated into the cabin but the total heat rejection available to experi-
ments (air cooled plus cold plates) is 4 to 5 kW. The latest experiment re-
source allocation studies indicate experiment power will be reduced to 3.4 kWe
average and the subsystem power is 3. 6 average. Therefore, the total heat
rejection capability of the cabin is still adequate (7 kW) but the split in available
resources for subsystems and experiments is about equal. Further work is
needed to define the freon flow arrangement to the pallet and tradeoff a pallet
interface heat exchanger between an independent pallet loop and the cabin water
loop. In this regard, it appears that a single fluid loop between the cabin and
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radiator would greatly enhance system simplicity and flexibility. It is antici-

pated that much of the equipment on the pallet can be passively thermally

controlled. Passive thermal control consists of insulation, proper optical

coatings, and heaters. Once again, final design must await more detailed ex-

periment definition.

Experimenters (lab or pallet) must provide their own cooling system

for components that require temperatures below that provided by the radiator

(40°F). The thermal control system for the pallet is thought to be somewhat

analagoric to that used on the Apollo Telescope Mount (ATM) rack of the Skylab

program. The components mounted on the rack are thermally controlled largely

by means of insulation and heaters. The layout of the ATM rack components is

shown on Figure 70. The components are identified on Table 30. The insula-

tion layout, heat locations and radiation windows which provide controlled heat

shorts in the multilayer insulation are shown on Figure 71.

The ATM layout will be nothing like the pallet layout of components nor

will the type of components be the same, however, the thermal control design

approach may be quite similar.

B. Weight Chargeable Consumables

The Shuttle orbiter has ECS provisions for 28-mandays with nothing

charged to payloads and the Sortie Lab has 21-mandays for consumables (O2,
N2, LiOH). Any provisions above these are charged to experiment weights.

C. Contamination

Several accommodations are planned for various modes of contamina-

tion that affect experiment operation. Some experiment disciplines may

require high cleanliness levels in the pressurized module, some no overboard

dumping of waste products such as fuel cell water or condensate, and some

may require wide view angles for sensors mounted on the pallet.

1. Cabin Cleanliness Level. The design requirement to maintain a

100,000 class cabin cleanliness level imposes a considerable penalty on

ventilation system design as indicated in Table 31. The baseline design utilizes

filtration in the cabin ventilation system to maintain a maximum particle size

of z 75 micron which does not satisfy the 100,000 class requirements. Tighter

*Maximum of 100,000 airborne particles/ft" - 0. 5 micron and 700 particles/

ft" > 5 microns. Air change rate of 1 every 3 minutes.
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TABLE 30. RACK COMPONENT LAYOUT LEGEND

Find

No. Description

1 Command Receiver (Redundant)
2 Remote Analog Submultiplexer (# 2)

3 Directional Coupler (COMM)
4 Command Decoder (Redundant)

5 Remote Analog Submultiplexer (#1)

6 Watt Hour Assembly
7 Signal Conditioning Rack (#2)

8 Signal Conditioning Rack (#3)
9 CMG Inverter Assy (#2)

10 Power Transfer Distributor
11 J-Box Assembly
12 Command Decoder

13 Signal Conditioning Rack (#1)

14 Remote Digital Multiplexer
15 Multiplexer Assembly (A2)
16 Multiplexer Assembly (Al)

17 PCM/DDAS Assembly (Primary)
18 Remote Digital Multiplexer
19 PCM/DDAS Assembly (Redundant)

20 Remote Digital Multiplexer
21 Two Channel RF Multicouplers
22 Measuring Distributor (# 2)

23 Command Receiver
24 Directional Coupler (COMM)
25 Coaxial Switch (Flight)

26 Control Moment Gyro (#1)
27 Charger/Battery/Regulator Module
28 ATM Rate Gyro Z-2 (Redundant)
29 Control Distributor (#1)
30 CMG Inverter Assy (#1)
31 Signal Conditioning Rack (# 5)

32 CMG Inverter Assy (#3)
33 Remote Analog Submultiplexer (# 3)
34 Signal Conditioning Rack (#4)
35 Remote Analog Submultiplexer (#4)
36 Multiplexer Assembly (BO)
37 Switch Selector MOD II (#4)
38 Remote Digital Multiplexer

39 Multiplexer Assembly (A3)
40 Amplifier and Switch Assembly
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TABLE 30. (Continued)

Find
No. Description

41 Signal Conditioning Rack (#6)
42 Master Measuring Voltage Supply
43 Master Measuring Voltage Supply (Redundant)
44 NRL "A" Power Supply
45 NRL "B" Power Supply
46 HAO Power Supply
47 ASAP Memory Assembly
48 Data Storage Interface Unit
49 Tape Recorder (Primary)
50 Tape Recorder (Redundant)
51 Redundant Converter DC to DC
52 Fine Sun Sensor Signal Conditioner
53 Star Tracker Opto-Mech Assy
54 Control Moment Gyro (#3)
55 Main Electronics Assembly (S-054)
56 Five (5) Micron Filter
57 Signal Conditioning Rack (#8)
58 Memory Load Unit
59 Switch Selector MOD II (#1)
60 Digital Computer
61 Digital Computer (Redundant)
62 Signal Conditioning Rack (#9)
63 Switch Selector MOD II (#3)
64 Signal Conditioning Rack (#7)
65 Memory Load Unit Tape Recorder
66 Switch Selector MOD II (#2)
67 Control Distributor (# 3)
68 Remote Analog Submultiplexer (#6)
69 Transient Filter (NRL-A)

Transient Filter (NRL-B)
70 Control Distributor (# 5)
71 Star Tracker Electronic Assy
72 Control Distributor (#2)
73 Remote Analog Submultiplexer (#5)
74 Measuring Distributor (#1)
75 ATM Rate Gyro Z-3
76 Control Distributor (#6)
77 C and D Logic Distributor
78 ATM Rate Gyro Y-2
79 ATM Rate Gyro Y-1
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TABLE 30. (Concluded)

Find
No. Description

80 ATM Rate Gyro Y-3
81 Workshop Computer Interface Unit
82 ATMRate Gyro X-3
83 EXP Pointing Electronic Assembly
84 ATM Rate Gyro X-1
85 ATM Rate Gyro X-2
86 Main Power Distributor
87 Auxiliary Power Distributor
88 ATM Rate Gyro Z-1
89 Measuring Distributor (#3)
90 EVA Roll Control Panel
91 Telemetry Transmitter (# 2)
92 VSWR Measuring Assembly
93 Telemetry Transmitter (#1)
94 Control Moment Gyro (#2)
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TABLE 31. DESIGN IMPACT MEETING 100, 000 CLASS CLEANLINESS LEVEL

ECS DRM* 100, 000 Class Design

Total Air Flow, m 3/min 16.9 to 18.4 20.4 (720)

(CFM) (595 to 650)

Vent. Fan Flow, m 3/min 15.3 (540) 18. 8 (665)

(CFM)**

Sys. Resistance, AP, cm 1.842 3. 683 (1.45)

(inch) of H 2 O (0.725)

Fan Input Power (Watts) 120 310 (min)

Fan Noise (overall sound 89. 5 96.0

power, dB)****

Air Change Rate*** Once per 3.3 min Once per 3 min

to 3. 7 min

Filter Area, m 2 (ft 2 ) 0.2 (2) 0.4 (4); 0.3 m (1 ft) deep

Particle Retention (Am) 74 0.3; (99.7% EFF.)

Special Reqts. - HEPA Filter must be in-

stalled with a good sealing

design. This implies that

supply and return ducts are

required, ventilation system

design flexibility is restrict-
ed.

* Considered cabin air loop only. Experiment air cooling loop is isolated and

independent of cabin loop.

** Study performed on the vent. fan. Additional 1. 6 to 3. 1 m 3/min (55 to 110

CFM) that compromises the total air flow comes from the air processing system.

*** Based on an assumed effective volume= 61. 5 m 3 (2,170 ft3)

**** Estimated sound power level. Fan should be within ± 4 dB of this value.
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filtration is utilized for air flow through the condensate collection/CO 2 removal

system where gas flow rates are much lower with a resulting low penalty. The
primary adverse effects of tight filtration in the cabin ventilation system are

increased power, increased fan noise levels with larger noise suppression

devices and possibility of increased filter maintenance. Table 32 and Figure
72 list potential candidate filters and identify the baseline filter.

Skylab data and experiment success raise the question of need for main-

taining the pressurized cabin area at a 100,000 class level. Payload criteria
needs to be reexamined and this requirement deleted if possible. The cleanli-
ness level should be specified by airborne, particulate filtration level and
surface cleanliness of components prior to module installation. For local areas
of high cleanliness, (if identified) workbench areas could be provided as ancil-
lary experiment support equipment.

A review of Skylab filtration capability and the resulting contamination
levels was made. Table 33 shows a summary of the various filters used in the
Skylab ventilation system (Figure 73). Additional contamination control was
achieved by stringent material control and cleaning all hardware prior to
assembly by wiping surfaces until visibly clean (No particles exceeding 50
microns).

The cleanliness levels being maintained appear adequate and do not
present a significant volume/power penalty or house keeping chore. The crew
has reported that surfaces other than filters remain very clean. Objects dropped
in the cabin atmosphere are carried by air flow back up to filters where they
collect and can be removed. Cabin airborne contamination levels were meas-
ured by experiment T-003. Preliminary data are presented in Table 34.

One fault, however, in the Skylab system was inadequate filtration of
cabin gas flow across the cabin heat exchangers requiring heat exchanger
cleaning as a regular house cleaning chore.

2. Trace Contaminants. All payloads with pressurized modules will be
affected by trace contaminants impacting crew safety. The accommodations
for controlling trace contaminants from experiment equipment has been dis-
cussed under Sections IV and V. Design constraints on experiment payloads
are to be determined.

3. Radiator Blockage. Preliminary assessment of the blockage of a
deployed radiator on the viewing of pallet-mounted sensors has been completed.
The investigation identified the view factors of various pallet floor segments to
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TABLE 32. AIR FILTERS CONSIDERED FOR SORTIE LAB APPLICATION

I HEPA Filters (Cambridge Filter Co.)

Efficiency: 99. 7% at 0. 3p smoke particles (DOP)

AP= 1. 5 cm (0.6 in) H 2 0 at 17.0 m 3/min (600 CFM)

0. 6 mx 0. 6 mx 0.3 m (2 ft x 2 ftx 1 ft)

II High Performance Disposable Filters (Farr Co.)

HP-100, Efficiency = 75% at 0-5/p, 98% at 5-10/p

dust (Gravimetric Test Method)

AP = 0. 64 cm (0. 25 in.) H 20 at 17.0 m 3/min (600 CFM)

0. 5 mx 0. 5 mx 0. 2 m (20 in. x 20 in. x 8 in.)

III High Efficiency Disposible Filter (Farr Co.)

J - 12 (Model 3030)

Efficiency = 98% at 5-10p dust,

360 for NBS atmospheric

A P = 0.25 cm (0.10 in.) H20 at 16.3 m 3/min (575 CFM)

0.3 mx 0.6 mx 0.05m (12 in. x 24 in. x 1 7/8 in.)

IV Square Mesh Screen (Michigan Wire Cloth)

For A P= 0.25 cm (0.1 in.) H 2O at 15.3 m 3/min (540 CFM,)

Mesh 150 200 250 325 400

Micron
Retention 104 74 61 44 38

Area 0.057 0.068 0.073 0. 108 0.097

Req'd m 2(in. ) 2  88.8 105.3 118.4 167.2 149.6
Baseline
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Figure 72. Air filter performance characteristics at a flow rate of 17. 0 m 3/min (600 cfm).



TABLE 33. SKYLAB FILTER DESIGN

Item Location Filter Design Air Flow Rate

I.ECS Mixing Chamber Assembly Workshop 60 x 60 mesh wire cloth filter backed up by 56.6 to 68.0 m3/min
a 4 x 4 mesh screen. (2000 to 2400 cfm)
Filters particles of 231 micron size and
greater.
Surface area ; 0.42 m2 (654 sq. in.)

2.WMS Fan Odor Filter Assembly Workshop Assembly contains 4 types of filters 3.4 m3/min (120 cfm)
Inlet debris screens, 10 mesh and 40 mesh respect-
tively; upstream filters (inboard and outboard), 60
mesh; downstream filters (inboard and outboard), 11
micron nominal and 25 micron absolute particle
retention; and an outlet screen of 6 mesh. Respective
surface areas for the above filter are: 10 mesh =
0.10 m2 (155 sq in.) and 40 mesh - 0.11 m2 (: 170 sq in.);
inboard = 0.13 m2 (200 sq in.) and outboard = 0.19 m2

(300 sq in.); inboard = 0.14 m2 (214 sq in.) and out-
board= 1.13 m2 (1750 sq in.); and screen = 0. 02 m2

(39 sq in.).

3*Diffuser Screen Under Work- 6 x 6 wire cloth mesh. Surface area - 0. 27 m2  19. 8 to 22. 7 m3/min
shop floor (424 sq in.) (700 to 800 cfm)

4.Portable Fan Assembly Screen Workshop 6 x 6 mesh. Surface area < 0. 013 m 2 (20 sq in.) 4.2 m3/min
(150 cfm)

5.MDA Cabin Fan Assembly Screen MDA 6 x 6 mesh. Surface area < 0. 013 m 2 (20 sq in.) 4.2 m3/min
(150 cfm)

6,Cabin Heat Exchanger Fans Airlock 6 x 6 mesh. Surface area - 0.013 m2 (20 sq in.) 4. 8 m /min
(STS) and < 0.09 m2 (140 sq in.) (O\VS ECS Bay) - (170 cfm)

7.Mole Sieve Debris Trap Airlock Filters 40 micron particles. Surface area ; 0.02 m2  0.93 m3/min
(32 sq in.) (33 cfm)
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TABLE 34. SKYLAB EXPERIMENT T-003 AEROSOL SAMPLING DATA

Particles Per Cubic Foot

Particle Size

Skylab Mission Day 1 to 3 3 to 9p 9 to 100

4 to 9
Max 16,250 850 500
Min 1,000 0 0
Ave 7,250 350 250

10 to 15
Max 14,050 1,600 450
Min 1,500 50 100
Ave 5,550 450 200

15 to 20
Max 12,300 800 350
Min 500 0 0
Ave 4,750 200 100

20 to 25
Max 6,200 1, 250 450
Min 1,500 0 0
Ave 3,500 300 100

25 to 28
Max 4,650 550 350
Min 2,000 0 0
Ave 3,450 200 100

Data not shown here, but during filter cleaning contamination levels were up by a factor of 3 to 4.



the radiator and the percentage of blockage the radiator contributed to a sensor
view angle. An example of what a typical pallet segment "sees" is given below.

VIEW TO SPACE, EARTH, SUN

VIEW OF RADIATOR VIEW TO SHUTTLE

\ 1 1  0

VIEW OF LAB MODULE W VIEW TO OTHER PALLET
SEGMENTS

PALLET SEGMENT

PALLET SEGMENT VIEW FACTORS - 1.0

A view factor (F) of a pallet segment to space equals 0. 65 means that other
bodies (such as Shuttle, lab, etc.) obstruct 35 percent of the 180 deg view angle
to space. Stated in another way, the pallet "sees" or has a view to structural
elements because of its location in the Shuttle payload bay area. If the "view
angle" requirement is reduced from + 90 deg to the normal (180 deg viewing)
to + 45 deg, the view to structural elements is reduced. The 180 deg viewing
presents "worst case" blockage effects. An illustration of the analytical model
utilized in this study is depicted in Figure 74. The configuration consists of a
non-deployed lab/pallet in the Shuttle payload bay area with a deployed radiator,
7. 6 m (25 feet) in length.

The results of the study are presented in Figure 74 and show that the
total radiator blockage to any one segment on the pallet is less than 1 percent.
The view to other structural elements such as the pressurized lab, Shuttle,
and other pallet elements is much larger (15 percent to 50 percent blockage).
If the view factors of the pallet are averaged over the entire floor, the average
view factor of the pallet floor to the radiator is 0. 0335 (3. 35 percent of the
total view angle) and to space is 0. 591 (59.1 percent of the total view angle).
Therefore, it is concluded that for sensors mounted on the plane of the pallet
floor, little blockage of the view angle is expected from the deployed radiator.
It should be noted that efforts are continuing to simplify the deployed radiator
interfaces with the experiment integration requirements. Additional trade
studies to be performed in this area of experiment integration are listed below:

a. Radiator length requirements. The present radiator design is
based on a white paint coating, 3ao environmental heat fluxes, and a maximum
heat rejection of 8.5 kW. The impact of designing the radiator for a silver/tef-
lon coating, nominal heat fluxes, and a maximum heat rejection of 8.5, 6 and
3 kW will be investigated.
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Figure 74. Geometric view-factor of selected pallet floor segments to a deployed radiator and to space.



b. Shuttle heat rejection support. The present radiator design is

autonomous from the Shuttle. The impact of utilizing Shuttle provided heat re-

jection (3, 6, 8.5 kW) will be investigated. The major trades goals will be

elimination for a deployed radiator requirement, reduction in ECS weight alloca-

tions, and simple Shuttle/Lab interfaces.

c. Experiment sensor viewing requirements. Attention will be

directed to experiment sensors having an interface with a deployed radiator

concept. Parameters investigated will be experiment sensor location, view

requirements, Shuttle attitudes and orbital inclination to solar vector (fl angle).

This study will include equipment used on the pallet and the scientific airlock.

4. Water Storage. The water management system provides for the col-

lection, storage and supply of the fuel cell generated water.

Two Skylab bottles of 552. 9 kg (1219 lbs) water capacity to store fuel

cell water were originally planned for Sortie Lab to avoid contaminating the
Lab's external environment. However, review of water generation rates of

various experiment disciplines showed the experiments disciplines, with the

exception of space processing, did not require more than one storage bottle,

(Figure 75). Since this payload does not require an uncontaminated external

environment, any water generated from that program that is beyond the

capability of one water bottle can be utilized in the sublimator. As a result of

this review, the baseline design now has only one Skylab water bottle for the

storage of fuel cell water. The storage tank will contain a predetermined

volume of water loaded during prelaunch operations to assure supply to the

sublimator and/or experiments above that available from fuel cell operation.
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SECTION I. REDUNDANCY RATIONALE FOR SORTIE LAB ECS
(PHASE B BASELINE)

A. Basic Redundancy Guidelines

1. All systems are designed for fail safe in crew safety and structural

protection. (High pressure GN 2 tanks achieve this status by adequate safety

factor - no flack shield provided. )

2. A component is designated Criticality I if a failure could jeopardize

safety of the crew or the vehicle. A component is designated as Criticality II
if it can cause loss of mission. A component is designated as Criticality III if

its loss would cause a reduction in a system capacity, control band tolerance,
or degradation of some ECS function that could be marginally tolerated by the

crew and equipment.

3. A minimum of two Criticality II components must fail prior to

jeopardizing crew safety, forcing the crew to leave the lab area, or causing
permanent unrepairable loss of a critical ECS subsystem.

4. A single Criticality III component failure will be permitted (if crew
safety is not jeopardized, the crew is not forced from the lab area, or if

unacceptable damage and/or unacceptable reduction in a subsystem perform-

ance capacity is not suffered).

5. Redundant coolant loops will not be utilized. Excessive weight,

cost, and control complexity penalties would result if redundant fluid systems

were used. Gas supply systems will be orificed or designed to limit gas flow

rates into the Sortie Lab for structural protection should line failures internal

to the lab occur. Fluid supply systems with a source consisting of two or

more storage containers shall be protected from a total system loss resulting

from loss of a single storage vessel.

B. Critical Subsystems Designation

1. The 0 2/N 2 atmosphere and H2 supply and control subsystems are

judged to be designated under the category of Criticality I. Component and

control redundancy has been incorporated for these subsystems.
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2. The following subsystems are judged to be of Criticality II and have

component and control redundancy or spares for the most probable failure

mode of several components: Radiator coolant loop, Lab coolant loop, cabin

atmosphere revitalization system (i.e., humidity and CO 2 removel), cabin

ventilation system, and equipment ventilation system.

3. The following subsystems are judged to be of Criticality III and

have no component or control redundancy for any component: Water stowage/

supply and control system, and the sublimator water supply and control system.

C. Criteria Leading To a Subsystem Component Being
Designated as Criticality I.

The PPO2 sensor/amplifier-controller, the atmosphere controller,

the 02 feed system, the N2 feed system, and lab vent system are all redundant

because loss of control will adversely affect crew safety.

The 02, H2 , and N2 tanks are Criticality I failure items. There is a

very remote possibility of tank rupture. However, each high pressure and

cryogenic tank has a pressure relief valve. The cryogenic storage tanks have

a pressure relief valve with a backup burst disk in the tank for the relief of

any excessive tank pressure. The heater controller for each cryogenic tank

may be turned "Off" from one of two sources (directed by caution/warning

signal). Each heater winding has over temperature cutout switches in the

power line, and each heater resistance element is temperature limited (i. e.,

its resistance increases with rising element temperatures and the elements

draw less current to produce less heat input to the tank as the tank heats up).

D. Criteria Leading To a Subsystem Component Being
Designated as Criticality II

1. All fluid pumping components are designated to be criticality II

failure items. All fluid pumps can accumulate wear and fail during a mission.

Therefore, all liquid pumping components (Freon and water coolant pumps)

are parallel-redundant with the redundant pump placed parallel to the primary

pump in the applicable loop to allow changeover from primary to secondary

w/o fluid spillage. All fans are replaceable-redundant in flight by spares

carried onboard. Fans are replaceable-redundant because of weight, and

space, penalties that would exist if each fan had a redundant fan installed

parallel to the primary fan.
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2. Electric solenoid valves which must cycle more than one complete

cycle (e. g. open to close to open is one complete cycle) during a mission

will be redundant for the most undesirable failure mode which could result

in a system criticality II failure. An example is the solenoid valves that

control the vacuum condensate collection system. Electrically operated

valves which will not normally cycle during midflight operations or that cycle

only in terminal mission activities are minor failures and will have no redun-

dancy. An example is the water tank dump valve.

3. Temperature mixing valves (TMV) and flow controlling solenoid

valves (FCSV) are redundant within their respective applications because they

can accumulate wear and fail during a mission to produce a criticality II loss.

The flowpath selector valves (FPSV) which direct the coolant flow to the

applicable TMV or FCSV are not redundant because the FPSV will cycle only

once during a flight and only then if a control valve fails.

4. The condensate collection system is redundant in controls and

components because loss of condensate control is a criticality II failure. This

will allow uncontrolled increases in lab moisture (humidity) content which

could cause moisture damage to equipment within the lab and/or possible crew

evacuation.

5. The cabin temperature control system and components are redun-

dant or spares provided because loss of the temperature control system is a

critical II loss of lab thermal control.

E. Criteria Leading to Subsystem Components Being
Designated as Criticality III

1. The sublimator controller and related water supply components are

not redundant because the sublimator is a supplementary heat sink only and

does not constitute a criticality II failure.

2. The water controller and related water stowage/supply components

are not redundant because they will function only during terminal mission

activities if operated at all. The only failure possible within the subsystem is

internal leakage damage to the bellows of the water stowage tanks when water

usage exceeds water production from the fuel cells. This water flow balance

is contrary to the mission normal (where water production exceeds water

consumption) and is not a criticality II failure which will allow most mission

objectives to be met.
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3. The flow directing valves to each LiOH canister are manual and

need not be redundant.

F. Contingency Operation

1. Cabin Atmosphere Revitalization - Operation of various combina-

tions of one fan/one condensing HX or one to three LiOH canisters with subse-

quent off design moisture and CO 2 control conditions is possible. Also support

might be furnished from the orbiter.

2. Radiator Coolant Loop - With this loop shut down, run Sortie fuel

cell at low capacity (less than 2 Kw) pick up additional power from the orbiter.

Operate Sortie sublimator for heat rejection.

3. Equipment/Cabin Ventilation Subsystem - With either one of the

main two air circulating systems in a nonoperative condition, certain low level

Sortie activity might be continued. Also support might be furnished from the

orbiter.

4. Water Management System - If water stowage is impossible, then

water may be dumped overboard continuously.
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SECTION II. COMPONENT JUSTIFICATION/LOCATION AND
CONTROL LOGIC FOR SORTIE LAB ECS

(PHASE B BASELINE)

A. Component Rationale/Location for 20M42717 Rev D

1. General Statements

a. Redundancy: The Lab ECS is baselined to fail safe. Upon this
assumption the following guidelines were used to justify redundant components.

(1) Liquid circulating pumps will be redundant in each coolant
loop.

(2) Air circulation fans are not redundant but will be accessible
for replacement inflight.

(3) Electrically operated valves which will cycle more than one
complete cycle (e. g. open to close to open) during the mission and which could
be a single point failure for a subsystem will be redundant for the most unde-
sirable failure mode. Electrically operated valves which will not normally
cycle during normal midflight operations or which cycle only in terminal
mission activities will have no redundancy (e.g. all solenoid valves handling
condensate water are redundant since they cycle multiple times during flight,
the sublimator water solenoid valve is not redundant since the sublimator is a
contingency and supplementary heat rejection sink).

b. In so far as possible the system component and control configura-
tion (Fig. A-1) will require minimum housekeeping in-flight and minimize turn
around time on the ground for reuse. Fluid sample and pressure access points
will be placed at critical locations in fluid systems to facilitate refurbishment
and checkout activities.

c. The normal (unenergized) positions of electrically operated
valves will be selected to minimize the time duration the valve requires power
unless dictated otherwise by paragraph A. 1. a above.

d. Pumps - All liquid pumps are placed downstream of all ther-
mally conditioned equipment and immediately upstream of heat rejection com-
ponents so that pump heat will have minimum effect on the coolant supply to
thermally conditioned equipment.
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e. Pump check valves and fill/drain valves - Pump check valves
prevent back flow through an inactive pump and permit the placement of system
fill and drain valves at pump inlet and outlet for flow passage filling and drain-
ing. Also purging and flushing of the entire coolant system (with exception of
the pumps) is possible with the fill and drain valves in this location without the
penalty of adding other components.

f. Coolant accumulators - Coolant accumulators are placed at
respective pump suction and pressurized by regulated GN 2 to provide proper
NPSH to pump suction over entire coolant temperature and viscosity range.
The accumulator also accommodates thermal volume changes and replaces
system leakage.

g. All air moving fans shall be accessible for inflight replacement.

h. No liquids, high pressure gases, or explosive gas mixtures

shall be dumped or vented into the Shuttle cargo bay. All these fluids shall be

routed through the Orbiter for external dumping via Q. D. lines interfacing to

the Orbiter. Self sealing Q.D. connections shall be used to facilitate removal

of Sortie lab from Orbiter without spillage of fluids.

2. Thermal Control Subsystems

a. Radiator Loop

(1). All radiator loop components are located external to

Sortie Lab to minimize possibility of refrigerant leakage internal to the lab
(free refrigerant when exposed to a catalist or flame generates phosgene gas,
an accumulative poison), and to keep cold radiator fluid lines external to the
lab to eliminate condensation problems on refrigerant lines and heat exchanger
M11 (these items will always be below the cabin dewpoint).

(2). The schematic is shown for a deployed radiator system.
The radiators are placed back-to-back and thermally isolated from each other.

(3). Refrigerant drier M22 is located upstream of the radiator
inlet to minimize system AP. The GSE H M3 is located downstream of thex

radiators to permit prelaunch freezing of the thermal capacitor without cold
coolant being passed through the radiator, which could produce undesirable
condensation on the radiator surfaces. During mission refurbishment, when
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the lab is removed from the orbiter, the servicer loop of the GSE Hx is pre-
vented from fluid spillage by selfsealing quick disconnects M340 and M342.
The small accumulator M341, between the QD and Hex, accommodates normal
thermal expansion of the servicer loop fluid after disconnection to prevent a
high pressure buildup on the servicer side from destroying M3 (and possibly
the radiator loop through leakage) as M3 warms up to the environment tem-
perature. The accumulator contains a known volume air pocket confined within
a pliable container to insure that the air will not be absorbed into the circulat-
ing servicer coolant during periods of high fluid pressure and cold tempera-
tures, or an upside down position of M341 occurring during vehicle stacking
procedures, launch, reentry, and landing. The quick disconnects are provided
to (a) condition the lab independently of the orbiter during refurbishment and
(b) facilitate removal of lab from the orbiter.

(4). The thermal capacitor M8 is located downstream of the
GSE Hex/radiator heat rejection components and upstream of TMV valves M9
and M14 to permit preflight freezing of the capacitor by M3 and refreezing of
M8 by radiators M5 and M6 after any orbital hot periods. Capacitor M8 will
be frozen during prelaunch by controlling the refrigerant outlet temperature
from M3 with a sensor located in the refrigerant fluid immediately upstream
of M8 or by a sensor located in the GSE servicer loop return leg.

(5). The radiator temperature control components (filters

M10 and M13, selector valves M12 and M15, and temperature mixing valves
M9 and M14) are placed upstream of all heat sources and receive refrigerant
within the proper temperature tolerances. Filter M10 and M13 protect TMV M9

and M14 from damage by any particles. Selector valves M12 and M15 select

between M9 and M14 in case of TMV failures during flight. TMV M9 and M14

coupled with thermal capacitor M8 shall maintain outlet temperatures from
1.7 to 5. 80C (35 0 F to 42. 50F) with radiator outlet temperatures from -73 to

5. 80 C (-100 to + 350F) and TMV hot port inlet temperatures from 10 to 43°C

(50 to l10oF). The narrow 4. 20C (7. 50F) allowable temperature variation on
the outlet of TMV M9 and M14 is required to prevent freezing of the Sortie
water coolant within Lab/rad Hx M11 in case Sortie water coolant pumps M41
are stopped and to insure the Sortie water coolant leaving M11 is always
adequately cooled to maintain Sortie lab humidity control. TMV valves M9 and
M14 are redundant per the redundancy statement of para. A. 1. a. (3).

(6). Lab/Rad Hx M11 is the first heat source in the radiator
loop because (a) M11 requires the coldest fluid source on the cold side with
the closest temperature tolerance to insure the lab coolant leaving M11 is
maintained within the proper temperature band, 2. 8 to 6. 90 C, 18. 3°C peak
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(37 to 44. 5oF nominal, 65 F peak) and (b) because Fuel Cell/Radiator hx M16,

the next largest heat source in the radiator loop, will operate satisfactorily
over a wider temperature coolant return supplied to the fuel cell, from -28.9

to 48.9 0 C (from -20 to + 120°F). Hx M11 receives full coolant flow to maxi-

mize Hx effectiveness and to minimize the hx hot to cold side AT to insure

proper dewpoint control of the Sortie lab air. A coolant bypass around M11 is

not provided because (a) refrigerant system AP must be minimized and (b)
the lab coolant entering M11 is expected to always be warmer than the hottest
radiator outlet temperatures.

(7). The fuel cell/rad hx M16, O2/Rad hx M18, and the pallet
cold plates M17 are supplied by parallel circuits to minimize total system AP.
The components are located downstream of the Lab/rad Hx M11 because they
have less stringent refrigerant inlet temperatures then M11. 0 2/rad Hx M18
is a heat sink to the radiator loop and is better placed in the warmer portion
of the radiator loop. The parallel flow arrangement of these components is
subject to more information becoming available on their required refrigerant
flowrates. The flow arrangement of these components will be rearranged if

required to meet refrigerant flow requirements. A potential candidate for

receiving full refrigerant flow is fuel cell/radiator Hx M16 to remove the high

waste heat rejection rate of the candidate fuel cells. The pallet cold plates

M17 are cooled by the refrigerant loop instead of the Lab water loop to avoid

freezing problems in the coldplates and minimize the heat load presented to

Lab/rad Hx M11.

(8). The freon pump M21 is pressurized to the correct inlet

pressure through freon accumulator M19, up to 114 N/cm2 (165 psig) max,

by regulator M220 in the GN 2 system. The accumulator is relieved by GN 2

relief valve M221 for pressures above 114 N/cm 2 (165 psig) which may be

produced by cyclic freon thermal expansion (occurring each orbit), which

compress the GN 2 in accumulator M19, or any leakage through the regulator

seat causing pressure buildup in the accumulator.

b. Lab Water Coolant Loop

(1). The Sortie/radiator Hx M11 is the primary heat rejection
component for the Sortie water coolant loop and is consequently located in the
hottest portion of the loop to maximize utilization of heat rejection via the
Sortie radiator loop during warm radiator conditions. This is done to minimize
use of the supplementary heat sink (i.e. the sublimator). M11 is located
external to the Sortie Lab.
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(2). The sublimator M43 is located downstream of Mll and will

be activated only when M11 is unable to maintain a coolant temperature at T4

that is less than the setpoint of the sublimator temperature controller. The
sublimator is located external to the vehicle to eliminate a large area pene-
tration of the Lab wall that would be required for the steam vent of an internally
mounted sublimator.

(3). Condensing heat exchangers M48 and M49 are the first
heat load on the lab coolant and are placed first to receive the coldest fluid for
maximum condensing capacity. The condensing Hex will remove the latent
heat load of the crew plus the water by-product of the LiOH CO 2 removal sys-

tem. Units M48 and M49 each have two internal parallel coolant loops. M48
and M49 are connected for parallel water coolant flow. Only one condensing

hex need be operative for a crew latent load of two men or less. Both units

are operated for a crew in excess of two men.

(4). Selector valve M46 and flow control orifice M47 are used

to bypass coolant around M48 and M49 when the condensing heat exchanger

function is not needed or when the cabin dewpoint temperature drops excessively

low. Orifice M47 insures the total system flow will not be affected when valve

M46 bypasses the condensing heat exchangers.

(5). The combined coolant flow of M48 and M49 is 226 kg/hr

(500 lb/hr), 113 kg/hr for each unit.

(6). Filter M50 removes migrating particles from the coolant

to minimize the probability of particulate damage to solenoid valves M52, M53,

M54, M55, M56, M57, and M60.

(7). Cabin Hx M51 is placed downstream of the condensing Hx

because it does not require the coldest available fluid to satisfy cabin tempera-
ture requirements. Excess coolant not needed for cabin temperature control

is bypassed around M51 by redundant valve clusters: M53, M54, M55,

(primary) or M56, M57, M60 (secondary). Selector valve M52 is positioned

by the cabin temperature controller to direct flow to the selected valve cluster

block flow to the other valve cluster. Redundancy is applied to valve cluster

M53, M54, and M55, and M56, M57, and M60 per the redundancy statement

of para A. 1. a. (3). Failure positions of either valve cluster will be to full

flow through M51. The valves of either cluster will provide four levels of

coolant supply to M51 at 0. 0, 33 percent, 66 percent, and 100 percent of the

total coolant flow. The percentage of coolant flow each solenoid valve sends

to bypass or to M51 is controlled by orifices M68, M69, M70 in one valve

cluster and M71, M72, M73 in the other valve cluster. Check valves M62,
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M64 or M63, M65, as applicable, prevent flow from the operating valve cluster
from short circuiting through the nonoperating valve cluster if one of three
control valves in the nonoperating cluster has failed in the energized position.
Short circuiting of coolant flow through the failed valve could cause a reduction
in the capacity of M51 during peak loads and an inability to stop all flow to M51
during very low loads.

(8). The thermal racks provide air cooling of electronic equip-
ment and are the largest heat source in the lab. The thermal rack air tempera-
ture is always higher than the cabin air temperature. Therefore, the thermal
rack equipment heat exchanger M58 is located downstream in the lab coolant
loop from the cabin hx M51 because M51 requires colder fluid then M58 to
maintain the cabin air temperature.

(9). The water coolant pump package M41 is pressurized on the
inlet through water accumulator M40 by regulator M222 in the GN 2 system to
10. 3 N/cm2 (15 psig) and relieved by relief valve M223 at 13. 1 N/cm 2 (19 psig)
to the cabin.

3. Water Management System

(1). H20 stowage tank M84 will store by-product water received
from the fuel cell M351 via the hydrogen scrubber M94. Scrubber M94 is
provisionally included in the fuel cell water discharge pending a decision on the
type of fuel cell used. A gas scrubber for fuel product water is not an expected
requirement, if the water is removed from the oxygen side of the fuel cell.
By cell design, water taken from the oxygen side will contain a minimum of
dissolved oxygen when it leaves the cell. However, water taken from the hydro-
gen side can, by cell design, contain considerable quantities of hydrogen gas
dissolved in the water under saturated conditions. If the hydrogen gas is not
removed from the product water the gas may precipitate out into tank M84, and
reduce its effective water capacity.

(2). Handvalve M91 located downstream of the hydrogen scrubber
allows preflight operation of the fuel cell without cell product water entering
water stowage tank M84. Placement of the valve downstream of scrubber M94
allows for preflight performance verification of M94.

(3). Checkvalve M89 is provided to protect the fuel cell and
hydrogen scrubber from damage or contamination resulting from backflow into
these units occurring during GSE activities or Sortie Lab flight operations.
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(4). Tank access valve M83 is provided to fill tank M84 with a

measured quantity of water during prelaunch for sublimator use. The same

valves may be used to drain M84 after shuttle landing.

(5). Tank M84 and water pump accumulator M40 are all pres-

surized by GN 2 regulator M222 and relieved by relief valve M223 at 13. 1 N/cm2

(19 psig) to the Sortie cabin. The relief pressure of 13. 1 N/cm2 (19 psig) is

established by the design inlet pressure of pump M41. The 10.3 N/cm 2 (15 psig)

regulator setting insures adequate pressure for the NPSH requirements of pump
M41 and water supply for sublimator usage during periods when water consump-

tion exceeds fuel cell water production. The normal operating pressure of

tanks M84, M86 and pump accumulator M40 will be 13. 1 N/cm2 (19 psig) above

cabin since water inflow from the fuel cell will pressurize the GN 2 ullage of
M84 causing relief valve M223 to relieve excess GN 2 to the cabin. M223 is

relieved internal to the cabin instead of externally to prevent a 10. 3 N/cm2

(15 psi) change occurring at the outlet of M223 during ascent into orbit. The

GN 2 supply to regulator M222 is flow limited for regulator failures by orifice

M219 to prevent excessive cabin pressures.

(6). Valve M100 and QD M232 are provided to protect the

bellows internal to tank M84 from seeing potentially destructive pressure

differentials greater than 4. 8 N/cm2 (7 psid) when M84 is empty of water

during flight or ground operations. QD M232 will be decoupled on the ground

during GSE checkouts of sortie lab to isolate the bellows of tank M84 from the

pressure differential exerted by regulator M222 during checkout of GN 2 sys-
tems. Valve M100 will be energized closed during flight by the water controller

to protect the bellows of tanks M84, M86 from excessive AP when excessive

use of water by the sublimator and/or water dumping activities causes the

bellows of the tank to bottom out.

(7). Valve M88 is used to dump tank M84 prior to reentry or

when the tank becomes over filled. When water stowage tank M84 is being

dumped via valve M88, the water controller will close M88 at the end of the

water dump. This will prevent the bellows of tank M84 from seeing a potentially

destructive pressure differentials when the A P across the water tank bellows

exceeds a preset differential.

(8). Accumulator M92 is provisionally included in the H20/
dump relief line to prevent excessive water pressures from occurring between

components M88 and M93 or any water flow control component located internal

to the orbiter. The most probably time of high water pressures will be during

reentry after tank M84 has been durmped. The accumulator contains a pliable
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bag with a known quantity of air sealed within the bag. The bag air volume is

1/15 or less than the volume of the accumulator at atmospheric pressure.

This insures the bag will not be subjected to excessive internal pressures

when the accumulator is exposed to vacuum.

(9). Handvalve M82 is used to fill tank M84 during prelaunch

with a known quantity of water or drain the tank after landing.

(10). An ion/particulate filter M98 reduces any water contamin-

ation level to acceptable limits so that it can be used as sublimator evaporant.

Particulate and salt accumulations in sublimator M43 will significantly reduce

performance.

(11). Sublimator water evaporant inlet pressure must be main-
tained within nominal limits 0. 7 to 4. 8 N/cm 2 (1 to 7 psia) to prevent break-
through. This range is relatively large and heat rejection rate is not signifi-

cantly affected over that range, therefore, an expensive water regulator is not

required. Inlet pressure is controlled by a combination of an accumulator

M81, a line orifice M80, an orifice internal to the sublimator, solenoid valve

M99 and control feedback from a pressure switch. Orifice M80 just down-

stream of the valve M99 limits the water flowrate to sublimator water accumu-
lator M81 when the valve opens to prevent rapid cycling of the pressure switch

and valve. The orifice at the sublimator inlet controls water flowrate into the

sublimator. The sublimator water accumulator in conjunction with the pres-

sure switch maintains the water pressure on the sublimator inlet orifice to a

1.7 N/cm2 (2. 5 psi) tolerance band. The sublimator inlet orifice limits water

flowrate to the sublimator during sublimator fill and breakthrough accidents.

The sublimator water accumulator M81 has a flexible plastic bag with a known

quantity of air sealed within the bag. The volume of air in the bag at atmos-

pheric pressure is 1/15 or less than the volume of the accumulator. During

ascent into orbit the bag will expand to fill the entire volume of M81 with a

final internal bag pressure of 0.7 N/cm2 (1. 0 psia) or less. During operation

of the sublimator, water enters M81 at pressures above 0. 7 n/cm2 (1. 0 psia)

causing collapse of the bag to an equalization pressure, thus the volume of air

in the bag changes with the water pressure, entering the accumulator.

4. Ventilation Subsystem

a. Cabin Ventilation

(1). The cabin atmosphere is recirculated at a total maximum

flowrate of 18.4 m 3/min (650 cfm). Of this, 15.3 m 3/min (540 cfm) is con-

tributed by cabin fan M181, and an additional 1.6 to 3.1 m 3/min (55 to 110 cfm)
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is contributed by the Atmosphere Revitalization System (Section II,A, 6). The

atmosphere revitalization air is dumped downstream of fan M181 and hex M151

because (a) allowing the air to enter upstream of M181 would result in a 1. 6

to 3. 1 m 3/min (55 to 110 cfm) reduction in overall system air flow (all air

must pass through M181) and (b) entering the air upstream of M51 would pro-

duce a higher system AP and reduced overall system flow (due to a higher

flow in M51 and a reduced thermal capacity of M51, the air exiting the atmos-

phere revitalization is close to dewpoint temperature).

(2). The cabin air is filtered to remove all particles above

100 microns by filters placed upstream of fan M181. The cabin air filtration

is placed in the air return area instead of the air distribution system because

the air return system has the potential to supply the large filtration areas

required to maintain 100K cleanliness without an excessive A P penalty on the

air circulation system.

(3). Electrical strip heaters M182, M183 are placed down-

stream in the full air flow since their AP in the system is minimal.

(4). Air distribution registers will be sized and placed within

the lab as required to meet ventilation requirements.

b. Cabin Atmosphere Revitalization (Condensate Collection and

CO 2 Removal)

(1). The atmosphere revitalization system is composed of 4

subsystems: The air handling system (M170 through M174), CO 2 removal

system (M175 through M180), condensate collection system (M120 through

M146), and GSE air supply connections M343, M344.

(2). Fans M170, M171 are placed at the system inlet to reduce

the total number of components required for air flow control. If the fans were

placed at the system outlet each fan would require a valve at its discharge (for

a total of two valves) to prevent backflow through either fan when it was not

operating. With both fans at the system inlet, only one additional valve

(M172) is required to prevent unwanted backflow through a non-operating
fan.
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(3). Valves M173, M174 are electrically operated and may be

positioned manually if needed. The valves will open when their respective fan

is "ON" (e. g. M174 will open when M170 is "ON") and close when their

respective fan is "OFF" to prevent air backflow with resultant condensation

from occurring in an isolated condensing hex.

(4). Damper M172 diverts the proper amounts of air to the CO 2

system for different crew metabolic rates. The location of M172 is dictated by

the location of fans M170, M171. The flow capacity for each fan M170 and

M171 is 1. 6 m 3/min (55 cfm). One fan is required for CO 2 and latent loads of

two men or less, both fans and condensing hexs are required for loads of three

men or greater. With one fan operating and damper M172 positioned to block

flow to the inactive system, 0. 3 m 3/min (10 cfm) will flow to the CO 2 removal

system and 1.3 m 3/min (45 cfm) to the applicable condensing hex. With both

fans running and M172 in midposition, the CO 2 system will flow a total of

0. 6 m 3/min (20 cfm) and each condensing hex 1. 3 m 3/min (45 cfm).

(5). Three LiOH canisters M176, M178, M180 are required to

remove a total CO 2 metabolic load of 21 man days. The CO 2 canisters are used

one at a time and are selected by manual valves M175, M177, M179. If CO 2

loads in excess of 21 man days are required, one of the three CO 2 canisters

must be replaced inflight. Manual valves M175, M177, M179 are placed

upstream of the LiOH canisters to prevent unused canisters from seeing the

full head pressure of fans M170, M171 which would increase the external air

leakage rate of an improperly sealed canisters.

(6). Condensing heat exchangers M48 and M49 are identical

and are required to remove latent metabolic load from the Sortie lab. The

units are internally redundant for condensate removal. Each unit has two air/

water separation modules and condensate water from each module exits through

separate QD connections on the sides of the unit.

(7). Condensate water passes through visual sight glasses

M137, M139, M141, M143 and through manual isolation valves M138, M140,

M142, M144. 'The hand valves and sight glasses on each condensate outlet are

required to locate and isolate a failed air/water separator module during flight

before the failure fills tank M134 with air. The condensate system is considered

lost if the tanks are allowed to fill with air because inflight dumping of the tanks

would contaminate experiments external to the lab. The condensate control

system (Section II, B, 6) is designed to recognize air breakthrough in the

condensate collection components and stop all water and air flow into the con-

densate tank until corrective action is taken. The isolation valves will be
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closed when a condensing hex is to be inactivated or when air breakthrough
occurs in a air/water separation module. The module in which air breakthrough
has occurred is found by inspecting the sight glasses for the presence of air and
closing the applicable hand valve to block subsequent passage of air. The hand-
valves and sight glasses are also used for prelaunch and inflight priming of the
air/water separators.

(8). Valves M124, M125, M128, M136 are energized closed to
block flow from hex M48, M49 to the condensate collection tanks during (a)
vehicle ascent or descent, (b) condensate dumping operations and (c) during
air breakthrough failures occurring during flight.

(9). Air bubble detectors M147, M148 detect air inleakage
resulting from failures in condensing hx M48, M49 and upstream components.
When air inleakage into the condensate system is detected, valves M124, M125,
or M128, M136, as applicable, will be energized by the condensate controller
to prevent the condensate collection tank M134 from filling with air until the
leak source is isolated or repaired.

(10). Redundant valves M130, M131 are energized by the con-
densate controller, as required to maintain tank M134 at a controlled vacuum
between 2.1 to 3.4 N/cm2 (3.0 to 5.0 psi) below cabin pressure. The con-
stant vacuum maintained in M134 provides the A P required to pull condensate
water through the air/water separators. Bleed orifice M146 limits the tank
evacuation air flow rate when valves M130, M131 are open to prevent over-
shooting the desired pressure. Valve M133 is opened by the condensate con-
troller to pressurize tank M134 to cabin pressure during condensate dumping.

(11). Valves M123 and M145 are used to (a) drain or position
the bladder of M134 during GSE operations, (b) verify the functions of the
condensate controller and associated control instrumentation, and (c) prime
the air/water separators prior to launch.

(12). Condensate stowage tank M134 is sized to hold all con-
densate water generated over a seven day mission. Tank M134 has a capacity
of 66.7 kg (147 lb) of water minimum. The maximum anticipated water
generation rate for a 7 day sortie mission is approximately 56. 7 kg (125
pounds).

(13). Valve M122 provides capability for inflight dumping of
M134 to (a) reduce reentry weight or (b) empty tank M134 after a gross air
breakthrough has occurred in the condensate system.
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(14). Accumulator M121 is provisionally included in the conden-

sate dump line to prevent excessive water pressures from occurring between

components M122 and M120 or any condensate flow control component located

internal to the orbiter. The most probably time of high water pressures will

be during reentry after tank M134 has been dumped. The accumulator con-

struction and properties are identical to that of M92 described in Section

II, A,3(7).

(15). GSE air supply and return for the Sortie lab is supplied by

QD M343, M344. The quantity of air supplied is only that required to maintain

humidity and acceptable air quality within the Sortie lab during refurbishment.

This GSE air supply will not be used for thermal control. Thermal control

during refurbishment will be supplied by the flight systems after the Sortie Lab

is installed in the Shuttle or by a drag-on system furnished by GSE.

c. Equipment Ventilation

(1). The electronic equipment located in the thermal racks

dissipates the largest heat load in lab. The thermal racks air tempearture is

always higher than the cabin air temperature. The thermal racks compart-
ments is sealed as tight as possible to minimize heat leakage paths to the cabin.

(2). The thermal rack atmosphere is recirculated at a nominal

flow rate of 19.8 m 3/min (700 cfm) by equipment fan M184. Fan M184 is

located upstream of the equipment heat exchanger M58 to minimize noise

generation between the two items. The equipment fan M184 operates continu-

ously.

(3). The equipment heat exchanger M58 dissipates the equip-

ment heat load to the water coolant loop. The air outlet temperature from heat

exchanger M58 is dependent upon the temperature of the coolant supply to M58

and the prevailing power loads in the thermal racks.

(4). The equipment air is filtered to remove all particles over

100 microns. The filter size and location have not been determined.

(5). Equipment air distribution registers will be sized and

located to meet the electronic equipment ventilation requirements.
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d. Two Gas Control

(1). The two gas control system is supplied with 2069 N/cm 2

(3000 psia) nitrogen regulated to 103 N/cm2 (150 psia), and 621 N/cm 2 (900

psia) oxygen regulated to 83 N/cm2 (120 psia). The 150 psia nitrogen and 120

psia oxygen are regulated to the required cabin pressure of 10. 1 N/cm 2 (14.7

psia). The cabin gas composition is nominally 21 percent 02 (PPO2 of 3. 1

psi) and 79 percent N 2 (PPN2 of 11. 6 psi). The two gas control system sup-

plies the correct amount of oxygen and nitrogen to the cabin to replace metabolic

and overboard leakage losses.

(2). Filter assembly M264 provides a clean high pressure 02
to the downstream solenoid valves and orifices. The filter is provided with an

internal relief valve to bypass the filter should it become clogged.

(3). Redundant latching solenoid valves M265 and M266,

mounted parallel for redundancy, to open, control the 02 supply to the inlet of

the 83 N/cm 2 (120 psia) regulator. The solenoid valves are operated by the

lab atmosphere controller. Both valves are open during normal operation.

Both valves are closed during lab venting.

(4). Controlled flow assembly M267 is located in a flow path

parallel to solenoid valves M265 and M266. The controlled flow assembly

M267 allows high pressure 02 to flow slowly to the downstream side of the

solenoid valves. When the solenoid valves are both closed, the 02 pressure

will equalize on both sides of the valves preventing a potential explosive hazard

from occurring when the solenoid valves are opened.

(5). Orifice M268 limits the 02 flowrate to the lab is a down-

stream component fails or a line ruptures.

(6). The 83 N/cm 2 (120 psia) 02 regulator M269 reduces the

621 N/cm 2 (900 psia) inlet pressure to an outlet pressure of 83 N/cm2 (120

psia) for pressurization of the 10. 1 N/cm2 (14.7 psia) two gas control system

regulator. The 83 N/cm 2 (120 psia) 02 regulator M269 contains one inlet filter

and two parallel circuits containing redundant manual shutoff valves, regulators,

relief valves and check valves. The regulator lockup pressure is 100 N/cm 2

(145 psia) maximum. The internal relief valves are set to relieve at 103 to

117 N/cm 2 (150 to 170 psig) and vent into the cabin area. The manual shutoff

valves and check valves isolate each of the redundant circuits.

183



(7). Check valve M286 operates in series (redundant to check

back flow) with checkvalves located at the outlet of each regulator unit in
M269. The check valves allow 83 N/cm2 (120 psia) 02 to flow to the inlet of
the 10. 1 N/cm 2 (14. 7 psia) cabin pressure regulator M233. The check valves
stop any additional 02 flow to cabin pressure regulator M233 when the cabin
partial 02 pressure is satisfied and the atmosphere controller switches from
the 83 N/cm 2 (120 psia) 02 source to the 103 N/cm2 (150 psia) GN 2 source.

The higher GN 2 pressure, 103 N/cm2 (150 psia) prevents any additional 02
flow to the cabin pressure regulator by maintaining a constant back pressure
against check valve M286 and the applicable checkvalve located internal to
M269.

(8). Filter assembly M224 provides clean high pressure N2
to the downstream solenoid valves. The filter is provided with an internal
relief valve to bypass the filter should it become clogged.

(9). Redundant latching solenoid valves M225 and M226,
mounted parallel for redundancy to open, control the N2 supply to the inlet of
the 150 psia regulator. The solenoid valves are operated by the lab atmos-
phere controller. Both valves are open during normal operation. Both valves
are closed during lab venting.

(10). Orifice M227 limits the N2 flowrate to the lab if a down-
stream component fails or a line ruptures.

(11). The 103 N/cm2 (150 psia) N2 regulator M228 reduces the
2069 to 207 N/cm 2 (3000 to 300 psia) inlet pressure to an outlet pressure of
103 N/cm2 (150 psia) for pressurization of the 10.1 N/cm2 (14.7 psia) cabin
pressure regulator M233. The 103 N/cm2 (150 psia) N2 regulator M228 con-
tains one inlet filter and two parallel circuits containing redundant manual
shutoff valves, regulators, relief valves and check valves. The regulator
lockup pressure is 124 N/cm2 (180 psig) maximum. The internal relief valves
are set to relieve at 124 to 145 N/cm 2 (180 to 210 psig) and vent into the cabin
area. The manual shutoff valves and check valves isolate each of the redundant
circuits.

(12). The 3-way manual valve M239 controls the flow path of the
N 2 to the cabin pressure regulator M233. The 3-way valve provides the means
to select either of two paths through redundant solenoid valves M237 or M238,
or to shut off the N2 flow through both paths. When the flow path through the
valve is manually selected, the appropriate electrical circuit is selected by
selector switches internal to M239 to operate the corresponding solenoid valve.
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The electrical circuits are open when the 3-way valve is in the off position.

Oxygen partial pressure sensors located in the cabin area determine when the

oxygen partial pressure (PP0 2) is higher or lower than the acceptable limits.

If the PPO2 is too low, an electrical signal is sent to the 3-way valve M239

which closes the selected solenoid valve (M237 or M238) stopping the 103 N/cm2

(150 psia) N2 flow. This allows the 83 N/cm2 (120 psia) 02 to flow through the

psia regulator to the cabin area increasing the cabin PPO2. When the cabin

PPO2 reaches the correct level, the atmosphere controller sends an electrical

signal to the 3-way valve M239 which opens the selected solenoid valve (M237

or M238) allowing the 103 N/cm2 (150 psia) N2 to flow through the 14.7 psia

regulator. The 103 N/cm2 (150 psia) N2 on the downstream side of check

valves M286 and M287 closes the check valves stopping the 83 N/cm2 (120 psia)

02 flow. The correct oxygen partial pressure range is maintained by the con-

tinued cycling of the N2 solenoid valves (M237 or M238).

(13). The 10. 1 N/cm 2 (14. 7 psia) nominal two gas regulator

M233 reduces the 83 N/cm 2 (120 psia) 02 or 103 N/cm 2 (150 psia) N2 to 10.1

N/cm 2 (14. 7 psia) for pressurization of the cabin. Regulator M233 contains a

common inlet filter and two parallel circuits containing redundant manual shut-

off valves and regulators. The manual shutoff valves isolate the redundant

circuits.

(14). The 02 partial pressure sensors may require calibration

during flight. The sensors are calibrated at two points, 0 percent 02 and

20.4 percent 02. Calibration at 0 percent 02 is accomplished by supplying the

sensors with 100 percent N2. The N2 is supplied from N2 regulator M228 and

flows through orifice M234 and hand valve M235. Orifice M234 limits the flow-

rate to the sensors and is placed downstream of hand valve M235 to slowly

meter the N2 gas to the sensors. Calibration at 20.4 percent 02 is accomplished

by supplying the sensors with a reference gas having a composition of 20.4 per-

cent 02 and 79. 6 percent N2. The reference gas is stored at 2069 N/cm2 (3000

psia) in reference gas bottle M279. Bottle M279 is filled and drained through

the normally closed solenoid valve M281 and QD M280. Filter M282 provides

clean reference gas for the downstream orifices and hand valve. Orifice M283

limits the reference gas flowrate should a line rupture occur. Opening hand

valve M284 allows the reference gas to flow through orifice M278 which slowly

meters the reference gas to the sensors.

(15). Solenoid vent valves M349 and M350 are provided to vent

the lab to the outside environment. The vent valves are mounted in parallel

for redundancy to vent.
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(16). Relief valves M346 and M347 prevent the internal pressure
of the lab from exceeding the external pressure by TBD psia. The relief valves
are mounted in parallel for redundancy to vent. A shutoff valve is incorporated
in the discharge line of the relief valve to seal the compartment from the out-
side environment or to isolate a leaking or failed relief valve.

(17). Relief valve M352 is provided to prevent the external pres-
sure outside the lab from exceeding the internal pressure by TBD psia. No
redundancy is provided because failure of this valve to operate would be a
second order failure. A first failure must occur which requires the lab to be
vented down during flight before use of M352 is required.

5. GN 9 Supply Subsystem

(1). The GN 2 supply system serves two functions: (a) supplies
N2 to the Sortie Lab to replace overboard leakage and (b) supplies pressure to
water stowage tanks M84, radiator loop coolant accumulator M19, and water
coolant accumulator M40. Two N2 tanks are required to meet these require-
ments.

(2). The two GN 2 tanks M203, M206 are mounted in parallel
and are connected to a common fill line and common distribution line. Each
tank has an individual fill and drain solenoid valve M202, M205, and an
individual outlet check valve M204, M207. The GN 2 tanks are initially pres-
surized to 2069 N/cm 2 (3000 psig).

(3). The GN 2 tanks are filled and drained through QD M200.
The tanks can be filled individually or as a group by opening the appropriate
solenoid valves. Pressurization of one tank will not pressurize the remaining
tank since each is isolated by a solenoid valve at the inlet and a check valve at
the outlet.

(4). If the GN 2 distribution system becomes overpressurized
by excess filling or overheating, the excess pressure is relieved by relief
valve M217 through QD M201. Relief valve M217 is set to relieve at 2413 N/cm2

(3500 psig).

(5). Filter M218 protects orifice M219 and regulators M220
and M222 from degradation by particulate contamination.

(6). Orifice M219 limits the GN 2 flow to an acceptable flowrate
should either the line rupture or the regulators fail.
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(7). QD 232 is provided to disconnect tank M84, from regulator

M222 when this tank is empty of water. This is done to preclude damage to the

storage tank bellows by overpressurization during GSE checkout operations of

the GN 2 system.

6. Hydrogen Supply Subsystem (Fuel Cell)

(1). The hydrogen is stored in three tanks M300, M302, M307.

Three hydrogen tanks are required to meet the maximum power demand of the

sortie lab. Each tank contains a quantity probe, a bulk fluid temperature sen-

sor, two destratification fans and two electrical heaters for expulsion of the

supercritical fluid. The tank internal volume is 0. 7 m3 (6. 83 cu ft) and the

normal operating pressure is 168.9 + 10.3 N/cm2 (245 + 15 psia). The usable

fluid in each tank is 12. 77 kg (28. 15 Ib). The tanks are filled and drained

through individual QD fittings on the tanks.

(2). Filters M301, M303, M308, M310 and M315 are located on

the outlet lines of the tanks (one filter per tank). The filters provide clean

hydrogen to assure proper operation of the check valves and relief valves.

(3). Valve modules M304, M311 contain a pressure transducer,

pressure switch and relief valve for each H2 tank (M304 is a dual unit). The

pressure transducer provides a continuous pressure readout for each tank.

The pressure switch and tank density outputs are used by the hydrogen controller

to selectively operate the hydrogen tank heaters to equalize tank usage and

maintain the required operating pressure. The pressure switch closes when

the pressure decays to a minimum of 159 N/cm 2 (230 psia) and opens when

the pressure increases to a maximum of 179.3 N/cm2 (260 psia). The relief

valve relieves excess pressures that may be caused by overfilling, over

heating, or nonusage of the hydrogen through QD M318. The relief valve is

set to relieve at 196. 5 N/cm2 (285 psia).

(4). Check valves M305, M306, M312 (one check valve per

tank) are located downstream of the valve modules. The check valves isolate

each tank from the other tanks. The check valves prevent the external leakage

or rupture of one tank from affecting the normal operation of the other tanks.

The check valves also enable the pressure switches to sense when their

respective tank pressure is below the pressure switch setpoint, since they

isolate their tank from the system pressure when their respective tank ceases

to contribute to the system flow.
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(5). The three H2 tank outlet lines are manifolded to one H2

distribution line downstream of the check valves. The one H2 distribution line

services the fuel cells.

(6). Hydrogen tank fill valves M321, M322, M326 are used for

chilldown and fill of the hydrogen tanks at prelaunch and valves M320, M323,

and M327 are used to vent the tanks during the tank chilldown and fill activities.

The tanks are filled simultaneously from a common H2 supply from the GSE.

The fill valve of each tank is closed by a GSE signal source when the quantity

probe in the respective tank indicates that the applicable tank has filled to the

required level. The hydrogen tank vent valves are closed by a GSE signal

source at the completion of tank filling. After all valves are closed, the

cryogenic hydrogen control system (Section II, B, 8) is enabled to supply

power to the tank heaters for bringing each tank up to the supercritical state.

7. Oxygen Supply Subsystem (Fuel Cell and Metabolic)

(1). The oxgyen is stored in two tanks, M250 and M252. Two

tanks are required to meet the maximum power demands, metabolic usage,

and overboard leakage. Each tank contains a quantity probe, a bulk fluid

temperature sensor, a heater temperature sensor, and three electrical heaters

for expulsion of the supercritical fluid. The tank internal volume is 0. 13 m3

(4.75 cu ft) and the normal operating pressure is 620. 6 ± 24 N/cm 2 (900 ±

35 psia). The usable fluid in each tank is 146.72 kg (323.45 lb). The tanks

are filled and drained through fittings on each tank.

(2). Filters M251, M253 are located on the outlet lines of the

tanks (one filter per tank). The filters provide clean oxygen to assure proper

operation of the check valves and relief valves.

(3). Dual valve module M254 contains a pressure transducer,

pressure switch, and relief valve for each 02 tank. The pressure transducer

provides a continuous pressure readout for each tank. The pressure switch

and quantity probe control the three heaters in the 02 tanks to maintain the

required operating pressure. Manual heater operation is also provided. The

relief valve relieves excess pressure caused by overfilling, overheating, or

nonusage of oxygen through QD M277. The relief valve is set to relieve at

696 N/cm 2 (1010 psia).

(4). Check valves M255 and M256 (one check valve per tank)

are located downstream of the valve modules. The check valves isolate each

tank from the other tanks. The check valves prevent the external leakage or
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rupture of one tank for affecting the normal operation of the other tank. The

check valves also enable the pressure switches to sense when their respective

tank pressure is below the pressure switch setpoint since they isolate their

tank from the system pressure when their respective tank ceases to contribute

to the system flow.

(5). The two 02 tank outlet lines are manifolded together

downstream of the check valves. A portion of the 02 goes to the fuel cells.

The remainder of the 02 passes through the 0 2/radiator heat exchanger M18

before supplying the sortie lab with its 02 requirements. Heat exchanger M18

warms the cold oxygen gas to preclude damage to the downstream valves and

regulators.

(6). Oxygen tank fill valves M290 and M291 are used for chill-

down and fill of the oxygen tanks at prelaunch and valves M289, M292 are used

to vent the tanks during the tank chilldown and fill activities. The tanks are

filled simultaneously from a common 02 supply line from the GSE. The fill

valve of each tank is closed by a GSE signal source when the quantity probe in

the respective tank indicates that the applicable tank has filled to the required

level. The oxygen tank vent valves are closed by a GSE signal source at the

completion of tank filling. After all valves are closed, the cryogenic oxygen

control system (Section II, B, 8) is enabled to supply power to the tank heaters

for bringing each tank up to the supercritical state.

B. Control Logic and Control Instrumentation for 20M42719,
Rev C

1. General Statements

a. All critical I & II controllers (Figure A-2) and their applicable

instrumentation are redundant to eliminate those single point failures in ECS

control systems which would cause rapid loss of Sortie Lab use. Critical I & II

controllers are partial pressure oxygen controllers, atmosphere controller,
cabin temperature controller, and condensate controller. All remaining

controllers are designated as critical II controllers.

b. Critical III controllers are water controller, sublimator con-

troller, radiator valve controller, and hydrogen tank controller. Loss or

malfunction of a critical III controller will produce reduction in capacity or

loss of a critical III subsystem. Loss of the water controller will cause loss

of water supply to the sublimator and/or internal damage to water tank M84.
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Loss of the sublimator controller is a loss of supplementary heat rejection
capacity with consequent higher resultant temperatures in the water coolant
loop of Section II, A, 2, b. Loss of a hydrogen tank controller could reduce the

peak power capacity of the fuel cell and/or the total KWH available during the
mission. Loss of an oxygen tank controller could have an impact on the fuel

cell comparable to that of the hydrogen controller mentioned above. Also the

02 supply system could be unable to meet the total mission metabolic require-
ments. Loss of the radiator valve controller is a second order failure which

is applicable only after a failure M9, M14 has occurred. Therefore this con-

troller does not need to be redundant.

c. The water controller is not redundant since it normally performs

only three or four discrete operations during a mission. The probability of a

failure occurring during either of these operations is very low. The allowable

time interval between most possible failure events and the required corrective

action could be too short for human response to change over to a redundant

controller before internal damage occurred within tank M84.

d. The sublimator temperature controller is not redundant. The

sublimator is a supplementary heat rejection sink that is nor normally used

inflight. The controller was judged unnecessary for redundancy because the

sublimator controller described herein is basically simple in design, is not

normally expected to operate for most missions, and because the inherent

operating characteristics of the sublimator limit the exiting coolant to tempera-

tures above 00C (32 0F).

e. The hydrogen and oxygen tank controllers are not redundant for

each tank because the loss of a single tank controller would only degrade a

mission and not cancel it (Section II, B, 1, b).

f. All controllers will have a two position manual "Control Source

Select" switch located on the controller (or on a remote panel internal to the

Sortie Lab cabin). The switch will select from one of two sources for external

commands to the controller; "Sortie Lab, " or "External Source" and will

remain in the position placed. "Sortie Lab" inputs will all originate from

manual control switches located internal to the Sortie Lab. "External Source"

will accept commands from any source outside of the lab. The external source

may be either orbiter or on the ground. The normal switch position will be in

"External Source." Unless otherwise specified in the following description,

all manual switches used for "Sortie Lab" inputs shall be the momentary con-

tact type which will return to the center or open position after a man's hand has

been removed from the switch operator. All "Control Source Select" switches

remain in the position placed and do not return to a center position.
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g. All controllers except the water controller and the sublimator

controller contain a configuration selector module within the controller
assembly. On critical I & II controllers, the configuration selector turns "ON"
the desired controller and its applicable control instrumentation, and turns
"OFF" the redundant controller and all its activities. The configuration
selector for critical III controllers (02 and H2 cryogenic tanks can turn "ON"
and "OFF" the control outputs) but not instrumentation outputs of a subcon-
troller within the controller assembly (e. g. the "02 Tank No. 1 Heater
Controller" is a subcontroller within the "02 Controller" assembly and only
the power output to the 02 tank heaters may be inhibited by the configuration
selector). The configuration selector of all controllers contains the "Control
Source Select" switch of Section II, B, 1, b and all manual switches for the
"Sortie Lab" inputs. All "External Source" inputs enter through the configura-
tion selector and the readings of all control instrumentation exist from the
configuration selector. In order to maintain measurement redundancy the

configuration selector shall not turn "OFF" or inhibit passage out of the con-

troller of any measurements during any controller operating or nonoperating
modes.

h. The controllers as described in the preceding remarks and in

the following paragraphs are not to be interpreted as a requirement for all of
the controller sections to be incorporated into one assembly containing all
control functions. For example a controller might be dispersed with manual
switches and visual readouts best located on a control panel, all power handling
sections located external to the lab, and solid state logic, etc., placed in some
third location.

i. Drawing 20M42719, "Sortie Lab ECS Electro Mechanical
Schematic," Rev C (Fig. A-2) shows only that instrumentation which is used
by the controllers for sensing inputs, fluid quantity determinations, and failure
mode isolation. No other measurements are shown. Measurements used as
control inputs to critical I & II controllers (Section II, B, 1, a) are redundant
with each redundant controller having its own measurement source. Measure-
ments used for fluid quantity determinations are redundant in the GN 2 supply
system but singular in the 02 and H2 supply systems because existing hardware
is being used in the latter two systems. Nonredundant controlling measure-
ments are used with critical III controllers (Section II, B, 1, b) since critical
III controllers have no redundancy.

j. In the following description of control logic and instrumentation,
measurement ranges and measurement discrete values (i.e. a binary "ON"-
"OFF"output) are specified only as required to complete the logic description.
All other measurement ranges and values are TBD or specified in other
publications.
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k. Measurement notations used in this description and on revision

C of drawing 20M42719 are as follows. Measurements are separately num-
bered in consecutive numerical order within categories for temperature (T),
pressure (P), flow (F), and density (p). Pressures are either differential

("A P"in psid), absolute reference ("PA"in psia), or gage reference ("PG"
in psig). A measurement discrete is noted by the letter "K" included in the
measurement number. Redundant measurements having the same range and

discrete settings have suffix letters "A" and "B" at the end of the measurement
number. Example: PG/PKG2A and PG/PKG2B are redundant measurements

(suffix letters "A" and "B") at the inlet of radiator coolant pump M21. Each

measurement has a gage referenced analog output (PG-), a gage referenced

discrete output (-/PKG-), and is measurement number two (-2-) within the

pressure measurement category.

I. All controllers shall have an input for GSE checkout purposes,
so that when activated by GSE power, will inhibit all controller outputs to all

valves, etc., and transfer these controller outputs to a GSE checkout

connector(s) that will facilitate GSE checkout and failure analysis of controller

outputs to other components. GSE checkout equipment shall be capable of

stimulating the controller inputs over the full span of the input and verifying

controller outputs.

2. Water Control

a. The water controller (a) monitors excessive pressure differen-

tials across the bellows of water tank M84 and (b) controls dumping of the

water stowage tank.

b. The controller monitors the bellows pressure differentials of

tank M84 by measurement P/PK3. The PD discrete of each transducer has

two actuation points. An "ON" discrete shall be generated on rising pressure
when the pressure on the water side exceeds the pressure on the GN 2 side by

2.1 + 0.0 N/cm 2 (3.0 + 0.0 psid). The discrete shall go "OFF" at falling
- 0.34 - 0. 5

+0.34 +0.5
pressures at 1. 0 34 N/cm 2 (1. 5 + 0 psid). When this discrete goes

- 0. O - 0.

"ON" the water controller shall automatically initiate a water dump from tank

M86 by opening dump valve M88. Dumping shall continue until the discrete
goes "OFF".

c. The second discrete shall come "ON" with rising pressure when

the pressure on the GN 2 side exceeds the pressure on the water side by 2.4
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+ 0. O + 0. O
N/cm 2 (3. 5 + 0. psid). The discrete shall go "OFF" on falling pres-

- 0.34 - 0.5

sures at 1.4 +0.34 N/cm 2 (2.0 + 0.5 psid). When this discrete goes "ON"- 0.0 - 0.0
during flight the water controller shall automatically stop all water flow out of
M84 by closing valve M100 until the discrete goes "OFF."

d. The controller shall send an inhibit signal to the sublimator
controller (Section II, B, 3) when the discrete of step c above is "ON. "

e. The controller shall have the following two "Sortie Lab" external
control inputs: (a) a power switch to turn the controller automatic control
functions "ON" and "OFF" (this switch shall not inhibit any of the measurement
outputs, Section II, B, 1, g, ) and (b) a water dump switch with positions to
"START" or "STOP" the water dump sequence. The "External Source" shall
have the same inputs.

f. When the controller is commanded to dump the water tanks by
an input from the "Control Source Select" switch, valve M88 will be energized
open until the pressure discrete of step c above occurs. When the pressure
discrete occurs, the controller shall (a) close valve M88 (to stop the water
dump), (b) close valve M100 and (c) send an inhibit signal to the sublimator
controller (Section II, B, 1, f). The controller will remain in the dump mode
and cycle valves M88, M100 and the inhibit signal as dictated by the pressure
discrete signal until a command to "STOP" the water dump is received.

g. Measurement A P/PK3 input to the controller and the outputs of
these measurements to T/M are not to be interrupted by the "Control Source
Select" switch or the controller being turned "OFF" in order to preserve
measurement information (Section II, B, 1, g).

3. Sublimator Control

a. The sublimator controller, when active, insures that the
temperature of the coolant water supplied to condensing heat exchangers M48,
M49 remains at or below 7. 2°C (45°F) to maintain cabin dewpoint and sensible
temperature requirements. The controller also maintains the pressure of the
sublimator water evaporant supply to within acceptable limits during sublimator
operation.

b. The controller has two measurement inputs; T4A and PA/PKA6.
T4A and T4B shall have a minimum range from -1. 1 to 48.9 0C (30 to 120 0F).
The controller shall monitor the value of T4 and, when activated for sublimator
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operation, shall turn on the sublimator by opening water supply valve M99.

The controller monitors the sublimator water supply pressure with PA/PKA6.

PA6 has an analog output from 0 to 6. 9 N/cm2 (0. 0 to 10. 0 psia) and discrete

+0.34 + 0.5 p
PKA6 closes on falling pressures at 1. 4 N/cm 2 (2. 0 psia) and

opens on rising pressure at 3.4 + 0 N/cm 2 (5.0 + 0.0 psia). When T4A
- 0.34 - 0.5

rises above 7. 20 C (45°F) the controller will open M99. The controller will

hold M99 open until PKA6 opens at 3.4 N/cm 2 (5. 0 psia) or T4A drops below

7. 2C (45 0 F). The controller will continue to cycle M99 as dictated by PKA6

and maintain the sublimator water supply pressure as long as T4A remains

above 7.2 0 C (45 0F). Then T4A drops below 7. 2C (45oF) the controller will

close M99 and allow the sublimator water pressure to decay to 0. 0 N/cm2

(0. 0 psia) as the sublimator dries out.

c. The controller shall have a "Control Source Select" switch to

select between a manual command originating within the lab or external to the

lab. Only one manual command switch exists; a power switch to turn the

controller automatic control functions "ON" or "OFF". An "Insufficient

Water" inhibit signal to the sublimator controller from the water controller

prevents the sublimator controller from opening M99 when tank M84 has been

depleted or drained. The inhibit signal bypasses the "Control Source Select"

switch and cannot be defeated. If M99 was allowed to open with insufficient

water in tank M84, then Filter M89 and fuel cell M35 would be subjected to

damage induced by vacuum drying and the entire water system could then be

evacuated up to valves M100, M88, and M83. An "Insufficient Coolant Flow"

inhibit prevents the controller from opening valve M99 when coolant pump

M41 is inoperative or is turned "OFF". The source of the coolant flow inhibit

signal shall be the closure of pressure switch PK4A or PK4B, the pump A P

switch. PK4A and PK4B shall close on falling pressures below TBD psid for

both switches. The controller shall be inhibited from opening M99 when the

pump AP is below acceptable limits. This inhibit shall not be defeatable.

However, provision should be made for inflight selection between PK4A and

PK4B to eliminate this single point measurement failure. Failure to inhibit

opening of M99 when the water coolant loop is not circulating will allow the

sublimator to freeze stagnated coolant water within M143, producing possible

rupture of internal coolant water passages within M A43 and loss of the water

coolant loop by external leakage of coolant water. Measurements T4A,

PA/PKA6 inputs to the controller and the outputs of these measurements to

T/M are not to be interrupted by the "Control Source Select".switch or the

controller being turned "OFF" in order to preserve measurement information

(Section II, B, 1, g).
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4. Cabin Temperature Control

a. The cabin temperature controller maintains the temperature of

the cabin air to the setpoint of the cabin air temperature. The system has

both heating and cooling capabilities with full redundancy in all functions.

b. The controller system has three subsystems: primary ("A")
controller (which controls valve cluster M53, M54, M55, and heater M162
with cabin temperature sensor input T6A and flow switch FlA input), secondary

("B") controller (which controls valve cluster M56, M57, M60 and heater
M183 with cabin temperature sensor input T6B and flow switch FIB input), and
the configuration selector which selects between primary or secondary control-
lers valve M52. Controllers "A" and "B" have identical operating character-
istics.

c. The configuration selector has the following control inputs to the
"Control Source Select" switch from "Sortie Lab" and External Source": (a)
a controller selector switch(s) with positions "Cabin Controller A ON," "Cabin

Controller B ON," and "Controller OFF," and (b) a heater control switch with

positions "Heater Auto," "Heater OFF." Measurements T6A, T6B, F1A, F1B

inputs to the controller and the outputs of these measurements to T/M are not

to be interrupted by the "Control Source Select" switch on the controller being

turned "OFF" in order to preserve measurement redundancy (Section II, B, 1,

g).

d. When a controller is turned "OFF", all power shall be removed

from the coils of the applicable valve cluster. The preferred failure position

for internal mechanical failures of a valve in either valve cluster shall be in

flow to M51.

e. Heaters M182, M183 are interlocked "OFF" at their respective

controllers by flow switches F1A, FiB as applicable until (a) the duct system
flowrate is greater than 1.4 m 3/min (50 scfm) and (b) either the cabin tem-
perature drops 1. 70 C (30F) below the setpoint for the cabin temperature (to
maintain crew comfort) or less than 4.4°C (400F) (to prevent freezing of the
water systems). The 1. 4 m 3/min (50 scfm) duct flowrate will allow air tem-
perature differentials across the heaters up to but not beyond 3. 90 C (390F)
when M182, M183 are sized to 500 watts. Each heater element M182, M183
shall have an over-temperature thermostat in the heater element for safety
purposes.

f. When a controller is commanded "ON" the configuration selector
shall supply a positioning pulse to selector valve M52, to direct the system flow
to the active valve cluster and block flow to the inactive valve cluster.
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g. The controllers will have an adjustable cabin setpoint indicated

by T32. Each controller shall operate its cluster of three valves through all

four levels of coolant flow to M51 (Section II, A, 2, b) within a temperature

band of ±1. 1C (±2. O0F) about the central (cabin) setpoint. The three valve

setpoints shall be at -1. 0, 0. 0, and +1. 0 about the cabin setpoint. Each valve

setpoint shall have a deadband from ±0. 17 to 0. 39 0 C (o0.3 to ±0. 7F) wide to

minimize shortcycling of the flow control valves.

5. Condensation Collection Control

a. The condensate controller performs the following operations:

(a) monitors for air breakthrough in the air/water separators of M48 and

M49 and prevents tank M134 from filling with air, (b) maintains controlled

vacuums in tank M134 to produce proper condensate flow into the tanks, (c)

prevents the cabin dewpoint from dropping below acceptable levels, and (d)

provides for inflight dumping of the condensate water.

b. The controller system has three subsystems: primary ("A")

controller (which controls valves M46, M136, M131, M133, M124, M122,

M129, and M125, with pressure input PG/PKG7A, flow sensors F5 and F6,

and dew point sensor A), secondary ("B") controller (which controls valves

M46, M136, M133, M130, M128, M125, M124, and M122, with pressure input

PG/PKG7B, flow sensors F5, F6, and dew point sensor B), and the configura-

tion selector which selects between primary or secondary controllers. Con-

trollers "A" and "B" have identical operating characteristics.

c. The configuration selector has the following control inputs to

the "Control Source Select" switch from "Sortie Lab" and "External Source:"

(a) a controller selector switch(s) with positions "Condensate Controller A

ON," "Condensate Controller B ON," and "Controller OFF," (b) a "Condensate

Dump" switch with positions "Dump" and "OFF" (c) a two position toggle

switch (this switch shall be present only in the Sortie Lab and shall remain in

the position placed) labeled "Flow Sensors" with positions of "ON" and "OFF,"

and (d) a "Launch" switch with positions of "Hold" and "Normal. " A pressure

inhibit signal originating from the operational atmosphere controller shall

enter the condensate controller. This inhibit signal shall not be capable of

being defeated by any source (Section II, B, 8, r). Measurements PG/PKG7A

and B, flow sensors F5, F6, sensor A and dewpoint sensor B inputs to the

controller and the outputs of these measurements to T/M are not to be inter-

rupted by the "Control Source Select" switch or the controller being turned

"OFF" in order to preserve measurement redundancy (Section II, B, 1, g).
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d. When both controllers are turned "OFF" all solenoid valves

shall return to their normal positions except valves M136, M124, M125, M128
which shall be energized closed as long as power is supplied to the controller.

e. Dew Point Sensor A or B, as applicable, shall be used as the
criteria to activate condensing heat exchangers M48, M49 when the cabin dew
point is above TBD 'F and deactivate the condensing heat exchangers when the
cabin dew point is below TBD 'F. The condensing heat exchangers are activa-
ted when the operational controller pulses latching valves M124, M125, M128,
and M136. The condensing heat exchangers are deactivated by restoring the
valves to their former positions. The pulses for positioning M46 shall be five
seconds or longer in duration.

f. Measurements PG7A and PG7B shall have an analog output of
0. 0 to -10. 3 N/cm 2 (0. 0 to -15 psig) referenced to the prevailing cabin pres-
sure.

g. Discretes PKG7A and PKG7B shall open on increasing vacuum
+0. 14 -+0.2

at -3.4 N/cm2 (-5.0 -0 psig) and close on decreasing vacuum at
-0. 0 -0

+0.0 +0
-2.1 0 N/cm2 (-3.0 psig). A second discrete shall close on decreas-

-0,14 -0.2
+0. 34 +0. 5

ing vaccuum at -0.7 N/cm2 (-1. 0 psig) and open increasing vacuum
-0.0 -0.0

+0. O +0. 
at -0.7 N/cm2 (-1.0 psig)-0.34 -0.5

h. When PKG7 rises above -2. 1 N/cm2 (-3. 0 psig), the opera-
tional controller shall open M130 or M131 as applicable to evacuate tank M134
through bleed orifice M146. When PKG7 drops to -3.4 N/cm2 (-5.0 psig) the
controller shall close the valve to hold tank M134 within a controlled vacuum
range from -2. 1 to -3.4 N/cm2 (-3. 0 to -5. 0 psig). As condensate continues
to flow into M134, the air remaining behind the tank bladder will be compres-
sed by bladder travel until the tank vacuum decays from -2. 1 to -3.4 N/cm2

(-5. 0 to -3. 0 psig), at which time the controller will re-evacuate the remain-
ing air space behind the bladder back down to -3.4 N/cm2 (-5.0 psig).

i. When tank M134 becomes filled with fluids or if the condensate
controller fails to maintain the proper tank vacuum level, then the upper
discrete of PKG7 will generate a tank full caution at vacuums less than -0. 7
N/cm 2 (-1.0 psig). The discrete will cancel out at vacuums greater than
-0. 7 N/cm2 (-1. 0 psig) after tank fluids are dumped or the controller failure
is corrected.
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j. Condensate will normally flow from M48, M49 to tank M134 at

a flowrate dependent upon cabin latent loads and condensing temperature. The

operational controller shall monitor both flow indicators F5 and F6 for indica-

tion of air bubbles in the condensate flow. Any air bubble signal from either

F5 or F6 indicates a failure in the applicable condensate loop. The condensate

controller will lock up the failed section to additional flow by closing M128,

M136 if a air bubble is detected by F5 (M148) or by closing M124, M125 if an

air bubble is detected by F6 (M147). This will insure that one condensing Hx

will continue to remove cabin latent loads until a failure can be corrected.

When an air bubble causes a valve closure, a signal output from the controller

will indicate which bubble detector produced the closure.

k. If one of the flow indicators fails or random lockups of one con-

densing heat exchanger begin to occur, which are not resulting from air leak-

age, then both flow sensors may be bypassed by leaving the "Flow Sensors

Bypass" in the "OFF" position.

I. The condensate may be dumped during orbit by placing the

"Condensate Dump" switch in the "dump" position. When this is done the

controller will (a) close M136, M125, M124, and M128, (b) after a five second

pause open M133 and M122. The condensate will be forced by cabin pressure

out of tank M134 until the tank bladder has traveled to the limit. The flow of

cabin air out of orifice M146 will ve very slow compared to the capacity of

valve M133, and the bladder of tank M134 will see full cabin pressure. The

system shall remain in this condition until the low pressure discrete has

occurred, -3.4 N/cm2 (-5.0 psig). After the pressure discrete has occurred

then (a) M122 shall be closed, (b) after a five second pause close M133, and

open M124, M125, M128, and M136. After the dump cycle is completed and

valves M124, M125, M128, M136 are opened, a small amount of condensate

will flow into M134 and the pressure at PKG7 will rise rapidly from -3.4 to

2. 1 N/cm2 (-5. 0 to -3. 0 psig). This will trigger an evacuation of the air

pressure behind the bladder of M134 from the prevailing cabin pressure down

to -3.4 N/cm2 (-5.0 psig). The condensate collection system will resume

normal collecting activities.

m. During launch, engine burns for orbit changes, retrofire,

reentry, and touchdown, the "Launch" switch shall be placed in the "Hold"

position. This action will (a) position M46 to bypass and (b) close M136,
M124, M125, M128 to prevent the air/water separators from seeing accelera-

tion induced pressures above 4. 1 N/cm 2 (6. 0 psid) or backflow of condensate

into separators. When the "Launch" switch is placed in the "Normal" position

the controller shall resume its former operating condition.
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n. A pressure inhibit signal, a discrete which comes "ON" at

6. 9 N/cm2 (10. 0 psia) and lower, originating from the atmosphere controller,

shall be monitored by the condensate controller configuration selector for all

operating modes. When the discrete comes "ON" (indicating loss of pressure

within the cabin), then (a) valves M136, M124, M125, M128 will be energized
closed, and (b) valve M133 shall be energized to equalize the tank to the pre-
vailing cabin pressure and M146 positioned to bypass. The control pressure

discretes of PKG7 shall be inhibited during this condition. After the discrete

has gone "OFF" then (a) valve M133, M124, M125, M128, M136 shall be

de-energized to Hx flow, and (b) the pressure control of PKG7 shall be
restored to regulate the pressure of tank M134.

6. Cryogenic Oxygen Control

a. The cryogenic oxygen controller performs the following opera-
tions: (a) equalizes the rate of consumption among the two 02 tanks, (b) main-
tains the pressure within each tank at the proper value and (c) prevents exces-
sive heater temperatures within each tank.

b. The controller system has six subsystems: two 02 Tank Control-
lers (one for each tank) which monitor the conditions within each tank and
initiate corrective actions, a density comparator which equalizes the rate of

consumption among the two 0 2 tanks, two 02 heater controllers (one for each
tank) which supply power to the heaters within each 02 tank (which pressurize

the tank for increasing the 02 expulsion rates), and a configuration selector to
receive external commands into the controller system to modify the operating

state of the controller system.

c. The configuration selector has the following control input to the

"Control Source Select" switch from "Sortie Lab" and "External Source:" (a)

a "02 Tank Subcontroller" switch with positions of "ON" and "OFF" for each

02 tank, (b) a "Density Comparator Bypass" switch with positions of "Bypass"
and "Normal." When an "02 Tank Subcontroller" switch is in the "OFF"

position, the outputs of both the 02 tank controller and 02 heater controller

shall be turned "OFF" for those two subcontrollers which that switch commands

and a "Cancel" signal (defined in Section II, B, 6, f below) shall be presented
at the input of the density comparator from the applicable 02 tank controller.
When the switch is "ON" both controllers for that tank shall function normally.
Measurement inputs to 02 Tank No. 1 controller are 02 fluid temperature T7

-186 to 27 0C (-320 to +80°F), 02 fluid density pl, 22.3 to 1113 kg/m 3 (1.39
to 69. 5 lb/ft3), 02 heater temperature T8 -184 to 3160 C (-300 to 600°F), 02
pressure switch PKA13 - closes on fall at 621 N/cm 2 (900 psia), opens on
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rise at 641 N/cm2 (930 psia), and 02 pressure PA14 34 to 724 N/cm 2 (50 to

1050 psia). The corresponding measurements to tank number 2 controller

are T9, p2, T10, PKA15, PA16. The outputs of the above measurements

(and any other measurements from the controller system) are not to be inter-

rupted by the "Control Source Select" switch or the controller being turned

"OFF" in order to preserve measurement information (Section II, B, 1, g).

d. Measurements T8, PKA13 are used as control parameters by

02 tank number 1 controller (tank number 2 controller operates identically)
to generate "ON" or "OFF" signal to the density comparator. An

"ON" signal will exist when PKA13 is closed and T8 is below TBD °F. If one

or both of these measurement conditions are not met, then an "OFF" signal

shall be presented to the density comparator.

e. The density comparator shall take the prevailing "ON" signal

received from the applicable 02 tank controllers and compare the two density

signals continuously received from the 02 tanks. The density comparator

shall send an "ON" signal to the 02 tank heater controller whose respective

02 tank controller has generated an "ON" signal except the one with the lowest
density reading. For example, if 02 Tank number 1 controller has generated

an "ON" signal but Tank number 1 has the lowest density reading of the two

02 tanks then the density comparator will not issue an "ON" command to the

02 Tank number 1 heater controller. Otherwise, an "ON" command will be

given to the 02 tank number 1 heater controller. When the control system is

operated with the density comparator in the "Normal" mode, 02 comsunption

will be equalized among both 02 tanks.

f. When an "02 Tank Subcontroller" switch command turns "OFF"

its respective 02 tank controller and 02 heater controller, then the density

comparator will receive a "Cancel" signal from the applicable 02 tank control-

ler and continue to operate with the density and "ON" inputs from the remaining

02 tank controller.

g. If the "Normal" operational mode of the "Density Comparator"

is changed to "Bypass" by the "Density Comparator Bypass" switch, then the

output of each "02 Tank Controller" will be directly coupled to its applicable

"02 Heater Controller" and the "O2 Cryogenic Controller" and the 02 cryogenic

control system will operate without equalization of 02 consumption among the

four tanks.
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7. Cryogenic Hydrogen Control

a. The cryogenic hydrogen controller performs the following opera-

tions: (a) equalizes the rate of consumption among the three hydrogen tanks,

and (b) maintains the pressure within each tank at the proper value.

b. The controller system has eight subsystems: three Tank

Controllers (one for each tank) which monitor the conditions of state within

each tank and initiate corrective actions, a density comparator which equalizes

the rate of consumption among the three H 2 tanks, three 02 heater controllers

(one for each tank) which supply power to the heaters within each H2 tank

(which pressurize the tank for increasing the H2 expulsion rates), and a con-

figuration selector to receive external commands into the controller system

to modify the operating state of the controller system.

c. The configuration selector has the following control inputs to

the "Control Source Select" switch from "Sortie Lab" and "External Source:"

(a) a "H 2 Tank Subcontroller" switch with positions "ON" and "OFF" for each

H2 tank, (b) a "Density Comparator Bypass" switch with positions of "Bypass"

and "Normal," and "H 2 Destratification Fan" switch with positions of "ON" and

"OFF" for each H2 tank. When an "H 2 Tank Subcontroller" switch is in the

"OFF" position, the outputs of both the H2 tank controller and H2 heater con-

troller shall be turned "OFF" for those two subcontrollers which that switch

commands and a "Cancel" signal (Section II, B, 7, f) shall be presented at

the input of the density comparator from the applicable H 2 tank controller.

When the switch is "ON" both controllers of that tank shall function normally.

Measurement inputs to H2 tank number 1 controller are H 2 fluid temperature

T15, -251 to -129 0 C (-420 to -200oF), H2 fluid density p5 2.7 to 69 kg/m 3

(0.17 to 4.31 Ib/ft3 ), H2 pressure switch PKQ21 - closes on fall at 159 N/cm2

(230 psia), opens on rise at 179 N/cm2 (260 psia), and H 2 pressure PA22

0 to 172 N/cm2 (0 to 250 psia). The corresponding measurements to Tank

number 2 controller are T16, p6, PKA23, PA24; Tank number 3 controller

are T17, p7, PKA25, PA26. The outputs of the above measurements (and any

other measurements from the controller system) are not to be interrupted by

the "Control Source Select" switch or the controller being turned "OFF" in

order to preserve measurement information (Section II, B, 1, f).

d. Measurement PKA21 is used as the control parameter by H2

Tank number 1 controller (tank number 2, and 3, controllers operate

identically) to generate an "ON" or "OFF" signal to the density comparator.

An "ON" signal will exist when PKA21 is closed, otherwise, an "OFF" signal

shall be presented to the density comparator.
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e. The function of the density comparator for the H2 controller

system is identical to that of the 02 density controller described in Section II,

B, 6, e. The only difference is the number of hydrogen tanks (three) and

oxygen tanks (two) presented to the density comparator.

f. The functions of the "H 2 Tank Subcontroller" switches and their

impacts on the H2 tank controller, H2 heater controller and density comparator

are identical to that of the 02 system as described in Section II, B, 6, f. The

only difference is the number of hydrogen tanks and switches.

g. The function of the "Density Comparator Bypass" switch in the

hydrogen controller is identical to the function of the "Density Comparator

Bypass" switch in the Oxygen Controller as described in Section II, B, 6, g.

8. Atmosphere Control

a. The atmosphere controller performs the following operations:

(a) maintains the lab total pressure within proper limits, (b) maintains the

partial 02 pressure within proper limits, and (c) depressurizes the lab.

b. The controller has ten subsystems: a primary ("A") atmos-

phere controller, a secondary ("B") atmosphere controller, three 02 sensor/

amplifiers, three 02 partial pressure controllers, an 02 partial pressure

meter display, and a configuration selector.

c. The configuration selector has the following control inputs to

the "Control Source Select" switch from both "Sortie Lab" and "External

Source:" (a) an atmosphere controller selector switch (s) with positions

"Atmosphere Controller A ON," "Atmosphere Controller B ON" and "Control-

ler OFF, " (b) an "ON"-"OFF" power supply switch for each corresponding

02 Sensor/Amplifier and 02 Partial Pressure Controller pair, (c) an "02

Partial Pressure Control Mode" switch(s) with positions "PP02 number 1,"

"PP02 number 2," "PPO2 number 3, " "Manual Addition, " and "OFF, " (d) an

"02 Supply" switch with positions "Open" and "Close, " and (e) a "GN 2 Supply"

switch with positions "OPEN" and "Close. "

d. In switch of step c (a) above, the controller selected shall

control depress and all automatic atmosphere control functions. If the switch

of step c. (a) above is "OFF," no atmosphere control functions can occur from

the controller system which change the atmosphere pressure or mixture.

When the switch of step c. (a) above is "OFF," the switch(s) of step c. (b)

above may be activated to read out partial 02 pressures from any of the three

PP02 Sensor/Amplifier and controller units.
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e. In switches of step c. (b) above, the 02 Sensor/Amplifier and

02 Partial pressure Controller pairs may be turned "ON" or "OFF" in any

quantity at any time along with their T/M, meter and control outputs.

f. In switch of step c. (c) above, three different 02 partial pressure

control modes are present for control of Sortie Lab atmosphere oxygen content:

(1) automatic addition with active control by one of the three PPO2 controllers,

(2) "Manual Addition" which adds pure 02 to the cabin continuously via M233 at

the maximum flow M233 can deliver at the prevailing cabin total pressure, and

(3) "OFF" which inhibits any 02 from being added to the cabin from any source.

Only one control mode can be active at any one time. Only one PPO2 Controller

(as selected by switch of step c. (c) will have active control over the lab partial

02 pressure even though all three 02 Sensor/Amplifier and 02 Partial Pressure

Controllers may be turned "ON" by switch of step c. (b) above. When the

switch is in the "OFF" position the atmosphere controller shall energize valve

M237, M238 as applicable to put continuous GN 2 pressure on M233 to maintain

the lab total pressure at 10. 1 N/cm 2 (14. 7 psia).

g. In switch of step c. (d) above, the "Open" and "Close" command

will cycle the 02 supply valves M265, M266 appropriately. The switch com-

mand will pass through the atmosphere controller that has been turned "ON"

by switch of step c. (a) above. The controller will in turn generate positioning

pulses for M265, M266. Commands from switch of step c(d) cannot change

the positions of M265, M266 if neither atmosphere controller (ref switch of

step c. (a)) is "ON." M265, M266 can be closed by the atmosphere controller

by command from switch of step c. (d) at any time. However, the execution

of a command to open M265, M266 will be delayed by the applicable atmosphere

controller until the time interval specified in Section II, B, 8, q has elapsed.

This constraint is imposed to eliminate explosion and fire hazards that could

occur if M265, M266 were opened indiscriminately.

h. In switch of step c. (e) above, the "Open" and "Close" commands

will cycle the GN 2 Supply valves M225, M226 appropriately. The switch com-

mands for M225, M226 will be handled in the same manner as described in

Section II, B, 8, g, above except the time delay constraint to open is not

applicable.

i. The configuration selector has the following control inputs to

the "Control Source Select" switch from only "External Source:" a "Depress"

switch with positions "Vent" and "Stop,"
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j. In switch of i above, the operating controller will open valves

M349 and M350 when the switch is in the "Vent" position and close M349 and

M350 when the switch is in the "Stop" position.

k. When switch of step c.(a) is changed from one atmosphere

controller mode to another atmosphere controller mode (e. g. change from

"Atmosphere Controller A ON" to "Atmosphere Controller B "ON") switch of

step i, will have to be reset (if applicable) for the replacement controller to

continue the depress cycle.

1. Measurements PA/PKA llZ, PA/PKA 11B, PA/PKA 9A, and

PA/PKA 9B inputs to the controller and the outputs of these measurements to

T/M are not to be interrupted by the "Control Source Select" switch or the

controller being turned "OFF" in order to preserve measurement redundancy

(Section II, B, 1, g). The only exception to measurement interruption is the

PP02 T/M signals which are affected by switch(s) of step c. (b) (paragraphs

d and e above).

m. Each 02 sensor/amplifier has a panel meter output which is

hardwired to one of three PP02 panel meters located on the controller.

n. When the controller is turned "OFF" (see switch of step c. (a))

valves will return to their normal positions and the interval timer of Section II,

B, 8, q will be reset to zero. If valves M265, M266 are not closed prior to

turning the controller "OFF" the lab will tend to go to a pure 02 gas composi-

tion as lab leakage, etc., causes nitrogen to excape the cabin.

(NOTE: The following three paragraphs describe controller functions

for different modes of operation: Atmosphere Maintenance, Depress,

and PPO2 Calibration.)

o. In Atmosphere Maintenance, the controller simply maintains

the PP02 and lab total pressure. The following description assumes the lab

is pressurized and the controller is to be turned "ON" from an "OFF" condi-

tion and placed in the Atmosphere Maintenance condition: (a) place switch of

step c. (a) in a controller "ON" mode, (b) change the position of M239 from

"OFF" to either M237 or M238 flow direction, (c) place switch of step c. (e)

in the "Open" position to open valves M225, M226, (d) verify that one of the

two toggle valves in M233, M228, M269 is open so gas can flow to the cabin,

(e) place switch of step c. (d) in the "Open" position (Note: Under certain

conditions valves M265, M266 will not open when this step occurs. Valves

M265, M266 cannot open until an interval timer has expired to allow pressure
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to equalize across valves M265, M266. Bleed orifice M267 is the equalization

device. After the 150 psia GN 2 system is turned "ON" via switch of step c.(e),
the GN 2 pressure checks and stops the 02 bleed flowing through M286, M287
to allow the 02 system to bleed up to 83 N/cm 2 (120 psia) downstream of 02
regulator M269, then bleed up to 690 N/cm2 (1000 psia) upstream of M269 to
equalize the pressure across M265, M266. The interval timer starts when

PKA 11A or PKA 11B reaches 69 n/cm2 (100 psia) and runs for TBD minutes.

When the timer expires, the pressure upstream of M269 will have bled up to

an acceptably safe pressure for the atmosphere controller to send an opening
pulse to valves M265, M266), (f) turn "ON" two 02 sensor/amplifier and 02
partial pressure controllers with switch step c. (c) and place one of the two
PPO2 controllers into automatic control of PP02 with switch of step c. (c)
(Section II, B, 1, f). The controller is now in the Atmosphere Maintenance
mode. The atmosphere controller will continuously feed makeup GN 2 into the
cabin through M233 as the cabin pressure drops with gas usage and leakage.
When the controlling PP02 controller senses a partial 02 pressure below the
controller deadband, an input will be sent to the atmosphere controller from
the PP02 controller. The atmosphere controller will send a de-energizing
signal to M237 or M238 as applicable to remove the GN 2 supply from M233.
M233 will then maintain the cabin pressure at 10. 1 N/cm2 (14. 7 psia) using
pure 02 until the PP02 concentration rises above the controller deadband and
initiates a return to GN 2 supply.

p. In Depress Mode, the controller vents the lab to space via a
non-propulsive vent. The following description assumes the atmosphere con-

troller is in the Maintenance mode. To depress the lab, (a) Turn to "OFF"

switch of step c. (c), "Close" M225, M226 by switch of step c. (e), and "Close"

M265, M266 by switch of step c. (d), (b) place switch of step i in the "Vent"

position and wait until the desired evacuation pressure is reached and (c)
place switch of step i in the "Stop" position. As the pressure of the lab decays,

the controller shall observe PA/PKA9A or PA/PK9B as applicable and generate

an inhibit discrete on falling pressures at 7 N/cm 2 (10 psia). The inhibit

discrete will be hardwired from the atmosphere controller configuration

selector to the condensate controller configuration selector. The inhibit dis-

crete shall be canceled on rising pressures at 9.7 N/cm2 (14. 0 psia) (Section

II, B, 6, c).

q. The PPO2 system may be calibration checked during flight.
The PPO2 system is calibration checked with the atmosphere controller in the

Atmosphere Maintenance mode. To calibrate the 02 Sensor/Amplifiers,

position switch of step c. (c) to the "OFF" position and isolate the PPO2
sensors from the cabin air composition by closing off cabin air flow to the
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sensors. Open M235 to zero the sensor with GN 2. Verify the meter display

indicates zero. Adjust if required. Close M235 and open M284 to flood the

sensor cavity with calibration gas. Verify the proper PPO2 level is indicated

by P9A and/or P9B. Close M284 and open the sensor cavity to the lab air.

Wait five minutes and return switch of step c. (c) to its former position.

9. Radiator Valve Control

a. The radiator valve controller provides for inflight switching

between TMV M9 and M14.

b. The controller valves M12, M15 with measurement input T1A

and has a configuration selector.

c. The configuration selector has the following control inputs to

the "Control Source Select" switch from "Sortie Lab" and "External Source:"

(a) a controller power switch with position "ON" and "OFF," and (b) a switch

with positions "Primary TMV" (M9) and "Secondary TMV" (M14), Measure-

ment T1A, input to the controller and the output of this measurement to T/M

is not to be interrupted by the "Control Source Select" switch or the controller

being turned "OFF" in order to preserve measurement redundancy (Section

II, B, 1, g).

d. When a controller is turned "OFF" all valves shall remain in

their positions. All valves are pulse operated latching valves. To position

valves M12, and M15 to the desired position the controller shall generate the

positioning pulse five or more seconds long to the applicable side of the valve.

e. After completion of controller checkout, valves M12, M15 shall

be positioned to flow freon to M9 as the primary mode. The controller shall

monitor temperature T1A for indication of failures of M9 to maintain mix

temperature drops to or below 32 0 F the valve controller will automatically

change M12, M15 to the M14 position to prevent freezing the Lab coolant and

generate a caution signal. Failures of M9 for high mix temperatures will be

detected by other systems and M12, M15 repositioned manually by the switch

of step 3. (b) above.

10. ECS Control Functions Not Using Controllers

a. This section is limited to miscellaneous control functions for

fans, pumps, etc.
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b. The following switches shall exist internal to the Lab and at an

external source for the freon pump M21: (a) switch(s) with positions "Primary
Pump ON," "Secondary Pump ON," "OFF," and (b) a switch with positions

"Normal" and "Station Keeping."

c. The following switch(s) shall exist internal to the Lab and at an

external source for water coolant pump M41: switch(s) with positions "Primary
Pump ON," "Secondary Pump ON," and "OFF."

d. Valve M174 shall be tied to the "ON"-"OFF" switch for fan

M170. When the fan is turned "ON" the valve shall open. When the fan is

turned "OFF" the valve shall close. A second identical switch shall exist for
the combination of fan M171 and valve M173. Switches shall be located internal
to the Sortie Lab and at an external source.

e. The following switch shall exist internal to the Lab and at an
external source for cabin heat exchanger fan M181: a switch with positions
"ON" and "OFF."

f. The following switch shall exist internal to the Lab and at an
external source for equipment heat exchanger fan M184: A switch with
positions "ON" and "OFF."

11. Sortie Lab ECS Measurement List

The following are "Column Headings" and definitions of heading for
the tabulated data presented at the end of this section.

a. "Measurement No. " is taken from drawing No. 20M42719,
Sortie Lab ECS Electro-Mechanical Schematic.

b. "Measurement Name" is the recommended measurement title.

c. "Range" is expressed as analog (0 - 5. 0 VDC) with probable
analog range called out (e.g. -32 + 120 0F) or as discrete (0 or 28 VDC)
with probable discrete value called out (e. g. "ON" > 100F).

d. "Sample Rate" is expressed as minimum acceptable samples
per minute at a normal sampling rate. Special minimum sample rates are
marked by an asterisk (*). The times during which special sample rates are
required are called out in "Remarks" columns.
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e. "Handling" - How data is handled during flight and GSE check-

out. "T/M" means telemetered to ground during flight. "R" means recorded

by onboard recorders during flight. Both "T/M, " "R" will operate at the

prevailing sample rate of item d above. "GSE" means the measurement is

required for system checkout activities on the ground. If a measurement does

not have a "T/M" or "R" designation, then it is inoperative during flight. A

"GSE" measurement must be available without delay during countdowns, if it

has a redline application.

f. "Vehicle Display" - Data display requirements internal to flight

vehicle. "SH/I" means displayed in shuttle on intermittant call-up basis.

"SH/C" is continuous display in shuttle. "SL/I" is Space Lab intermittent

call-up. "SL/C" is Space Lab continuous display.

g. "Ground Display" - Inflight display requirements on ground

consoles. "G/I" is ground intermittent call-up. "G/C" is ground continuous

display.

h. "Caution/Warning" - "C" designates a caution situation that

may not require an immediate command decision. Many resulting decisions

may depend upon the operating status of other ECS systems. "W" designates

a warning applicable to structure, crew safety, or mission critical situations

requiring a command decision.

i. "Remarks" contains additional information on the applicable

measurement. A symbol "PE" in this column means the measurement requires

pre-entry checkout before a crew enters the Sortie Lab.
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ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Temperature Original Date May 1973 Revised October 1973

Range Sample Hand- Vehicle Ground Caution/ Remarks
Measurement Measurement Name Rate ling Display Display Warning

No. VDC Temp. (0F)

TIA Temp, R21 Inlet to Lab/Rad 0 to-5 25 to 60 60 T/M GSE SH/I SL/I G/I A possible redline

Interface Hx, Primary

TKIA Lab/Rad Hex R21 Low Temp 0 or 28 <32 >45 60 T/M GSE W 320F "C-W" Display on Sh, SI, GND
Warhing & Hi Temp Caution C 450 F consoles.

TIB Temp, R21 Inlet to Lab/Rad 0 to 5 25 to 60 60 T/M GSE G/I
Rad Interface Hx, Secondary

T2A Temp, Outlet of Preflight Hx, 0 to 5 -100 to 2 T/M G/I Control sensor to preflt GSCU

Primary +100

T2B Temp, Outlet of Preflight Hx, 0 to 5 -100 to 2 T/M G/I
Secondary +100

T3A Temp, Thermal Capacitor, Primary 0 to 5 -20 to 60 2 T/M GSE SH/I SL/I G/I Primary Redline

T3B Temp, Thermal Capacitor, 0 to 5 -20 to 60 2 T/M G/I Backup Redline to T3A

Secondary

T4A Temp, Water Coolant Supply, 0 to 5 30 to 70 60 T/M GSE SH/I SL/I G/I Output of Subl Cont

Primary

T4B Temp, Water Coolant Supply, 0 to 5 30 to 70 60 T/M G/I
Secondary

T5A Temp, Air Supply to Thermal 0 to 5 40 to 120 2 T/M GSE SH/I SL/I G/I Primary Redline

Racks, Sensible, Primary

T5B Temp, Air Supply to Thermal 0 to 5 30 to 120 2 T/M G/I Backup Redline for T5A

Racks, Sensible, Secondary

T6A Temp, Cabin Free Air Sensible, 0 to 5 30 to 100 2 T/M GSE SH/I SL/I G/I Primary Redline PE, Output of Cabin

Primary Temp Cont.

TK6A Temp Caution, Cabin Free Air 0 or 28 on > TBD 2 T/M GSE C "C" Display on Sh, GND Consoles



ECS MEASUREMENT LIST

Vehicle Sortie.Lab Parameter Temperature Original Date _ Revised

Measurement Measurement Name Range Sample Hand- Vehicle Ground Caution/ Remarks
No. VDC Temp. (F) Rate ling Display Display Warning

T6B Temp, Cabin Free Air Sensible 0 to-5 30 to 100 2 T/M GSE G/I Backup Redline for T6A, Output of
Secondary Cabin Temp Cont

T7 Temp, 02 Tank No. 1 Fluid 0 to 5 -320 to 80 1 10* T/M GSE SL/l G/I *Sample rate during fill/drain.
Output of 02 cont

T8 Temp, 02 Tank No. I Heater 0 to 5 - 300 to 6 60* T/M GSE SL/l G/l *Sample rate during fill/drain.
600 Output of 02 Cont

T9 Temp, 02 Tank No. 2 Fluid 0 to 5 -320 to 80 1 10* TIM GSE SL/1 G/l *Sample rate during fill/drain.
Output of 02 Cont

T10 Temp, 02 Tank No. 2 Heater 0 to 5 -300 to 6 60* T/M GSE SL/ G/I *Sample rate during fill/drain.
600 Output of 02 Cont

TI1

T12

T13

T14

TI5 Temp, H2 Tank No. I Fluid 0 to 5 -420 to 1 10* T/M GSE SL/I G/l *Sample rate during fill/drain
-200 Output of H2 cont

T16 Temp, H2 Tank No. 2 Fluid 0 to 5 -420 to 1 10* T/M GSE SL/I G/l *Sample rate during fill/drain.
-200 Output of H2 cont

T17 Temp, H2 Tank No. 3 Fluid 0 to 5 --420 to 1 10* T/M GSE SL/I G/I *Sample rate during fill/drain.
-200 Output of H2 Cont

T18

T19



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Temperature Original Date Revised

Range Sample Hand- Vehicle Ground Caution/ Remarks
Measurement Measurement Name Rate ling Display Display Warning

No. VDC Temp. (oF)

T20A Temp, GN2 Bottle No. 1 Skin, 0 to.5 -100 to 150 2 T/M SL/I G/I

Primary

T20B Temp, GN 2 Bottle No. 1 Skin, 0 to 5 -100 to 150 2 T/M SL/! G/I

Secondary

T21A Temp, GN 2 Bottle No. 2 Skin ,  0 to 5 -100 to 150 2 T/M SL/1 G/I

Primary

T21B Temp, GN 2 Bottle No. 2 Skin. 0 to 5 -100 to 150 2 T/M SL/I G/I

Secondary

T26 Temp, Surface of Rad No. 1 0 to 5 -100 to 100 2 T/M G/I

T27 Temp, Surface of Rad No. 2 0 to 5 -100 to 100 2 T/M G/I

T28A Temp, Water Inlet to R21/H 2 0 0 to 5 50 to 130 60 T/M GSE SH/I SL/I G/I

Hx, Primary

T28B Temp, Water Inlet to R21 I/H20 0 to 5 50 to 130 60 T/M G/I

Hx, Secondary

T29A Temp, R21 at Pump Discharge 0 to 5 50 to 150 60 T/M GSE SH/I SL/I G/I Possible Redline

Primary

TK29A High Temp Caution, R21 Pump 0 or 28 on> 120 2 T/M GSE C "C" Display on SH, SL, GND
Discharge, Primary consoles, for fuel cell temp protection
Discharge, Primary

T29B Temp, R21 at Pump Discharge 0 to 5 60 T/M GSE SH/I SL/I G/I

Secondary

TK29B High Temp Ciution, R21 Pump 0 or 28 on > 120 2 T/M GSE C "C" on GND Console.

Discharge, Secondary

T30 Temp, Air Return from Thermal 0 to 5 70 to 130 2 T/M GSE SH/I SL/I G/I Possible Redline

Racks



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Temperature Original Date Revised

Range Sample Hand- Vehicle Ground Caution/ Remarks

Measurement Measurement Name Rate ling Display Display Warning
No. VDC Temp. (OF)

TK30 High Temp Caution, Air Return 0 or 28 on> 110 2 T/M GSE C "C" Display on SH, SL, GND consoles

From Thermal Racks

T31

T32 Temp, Setpoint of Cabin Temp 0 to 5 40 to 80 2 T/M GSE G/I Output of Cabin Cont. Redline

Controller

T33A Temp, Cabin Free Air Dewpoint, 0 to 5 30 to 100 2 T/M GSE SL/I G/I Possible Redline, PE

Primary

T33B Temp, Cabin Free Air Dewpoint, 0 to 5 30 to 100 2 T/M GSE G/l
Secondary

-. I



ECS MEASUREMENT LIST

,3 Vehicle Sortie Lab Parameter Pressure Original Date Revised

Range Sample Hand- Vehicle Ground Caution/ Remarks
Measurement Measurement Name Rate ling Display Display Warning

No. VDC Pressure

APIA AP, Freon Pump, Primary 0 to 5 0 to 40 psid 2 60* T/M GSE SH/1 SL/I G/I Primary Redline
*Rqd during checkout and launch

APKIA Low AP Warning, R21 Pump, 0 or 28 on < TBD 2 60* T/M GSE W "W" on SH, SL, GND consoles;
Primary psid *Rqd for checkout and launch

APIB AP, Freon Pump, Secondary 0 to 5 0 to 40 psid 2 60* T/M GSE G/I Backup Redline for APIA;
*Rqd for checkout and launch

APKIB Low AP Warning, R21 Pump, 0 or 28 on < TBD 2 60* T/M GSE W "W" on GND console. *Rqd for

Secondary psid checkout and launch

PG2A Pressure, Freon Pump Inlet, 0 to 5 0 to 200 2 60* T/M GSE SH/1 SL/l G/1 Primary Redline
Primary psig *Rqd during checkout and launch.

PKG2A Low Inlet Pressure Caution, Freon 0 or 28 on < TBD 2 60* T/M GSE C "W" on SH, SL, GND consoles;
Pump, Primary psig *Rqd for checkout and launch

PG2B Pressure, Freon Pump Inlet, 0 to 5 0 to 200 2 60* T/M GSE G/I Backup Redline to PG2A;
Secondary psig *Rqd during checkout and launch

PKG2B Low Inlet Pressure Caution, 0 or 28 on < TBD 2 60* T/M GSE C "W" on GND console; *Rqd for
Freon Pump, Secondary psig checkout and launch

AP3 AP, Bellows AP of H-,O 0 to 5 + 7.0 psid 2 60* T/M GSE SL/I G/I Output of water cont. *Rqd during

Stowage Tank M84 tank fill and drain on ground AP reads
+ psid when H20 side press is higher

than GN 2 side.

APK3-1 Tank Empty indicator of H20 0 or 28 Close on 2 60* T/M GSE C "C" displayedon SH, SI, GND
Stowage Tank M84 Decr @ consoles. Control input to water

-3+.5psid controller. *Rqd during tank fill,
.0 drain. Output of water cont.

Open on
rise @ -2.0

+0 id-.5 psid



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Pressure Original Date _ Revised

Range Sample Hand- Vehicle Ground Caution/

No.easurementC Pressure Rate ling Display Display Warning

APK3-2 Tank Full Indicator of H2 0 0 or 28 Close on 2 60* T/M GSE C "C" displayed on SH, SL, GND
Stowage tank M84 rise @ 3.0 consoles. Control input to water

+0 controller. *Rqd during tank fill,
-. 5 psiddrain. Output of water cont.
Open on
Decr @

+.51.5 +0-0

AP4A AP. Water Pump, Primary 0 to 5 0 to 50 psid 2 60* T/M GSE SH/I SL/I G/I Primary Redline
*Rqd during checkout and launch.

APK4A Low AP Caution, HO Pump, 0 or 28 on < TBD 2 60* T/M GSE C "C" on SH, SL, GND consoles;
Primary psid *Rqd during chechout and launch.

AP4B AP, Water Pump, Secondary 0 to 5 0 to 50 psid 2 60* T/M GSE G/I Backup Redline for AP4A;
*Rqd during checkout and launch

APK4B Low AP Caution, HO Pump, 0 or 28 on < TBD 2 60* T/M GSE C "C" on GND console,
Secondary psid *Rqd checkout and launch.

PG5A Pressure, Water Pump Inlet, 0 to 5 0 to 25 psig 2 60* T/M GSE SH/I SL/I G/I *Rqd during checkout and launch.
Primary

PKG5A Low Inlet Press Caution, H20 0 or 28 on < 13 2 60* T/M GSE C Primary Redline, "C" displayed on
Pump Inlet, Primary psig SH, SL, GND consoles, *rqd during

checkout and launch.

PG5B Pressure, Water Pump Inlet, 0 to 5 0 to IS psig 2 60* T/M GSE SH/I SL/I G/I *Rqd during checkout and launch.
Secondary

PKG5B Low Inlet Press Caution, H2 0 0 or 28 on < 13 2 60* T/M GSE C Backup Redline to PKG5A;
Pump Inlet, Secondary psig "C" displayed on GND console,

*Rqd during checkout and launch.

PA6 Pressure, Sublimator Water 0 to 5 0 to 10 psia 60 T/M GSE SL/I G/I Output of Subl. Cont.
Evaporant Inlet



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Pressure Original Date Revised

Range Sample Hand- Vehicle Ground Caution/ Remarks
Measurement Measurement Name Rate ling Display Display Warning

No. VDC Pressure

PKA6 Sublimator Evaporant Control 0 or 28 Close on fall 60 T/M GSE G/I Pressure control inputs for subl temp
Pressures @ + controller switch actions avail as outputs

Pressures @ 2 0 psia, from subl cont.

Open on
rise @

5 5 psia

PG7A Pressure, Condensate Collection 0 to 5 0 to -15 psig 2 60* T/M GSE SL/I G/I *Required during checkout and manual

Tank, Primary vacuum inflight operation. Outputs of cond
cont.

PKG7A-I Condensate Collection Tank 0 or 28 Open on fall 2 60* T/M GSE SL/I G/1

Control Pressures, Primary + -5.0 2
-0

psig, close
on rise @
-3.0 +0 psig

PKG7A-2 Condensate Collection Tank High 0 or 28 Open on fall 2 T/M GSE SL/I G/I

Pressure Caution, Primary @ -1 2

psig, close
on rise (

+.2-0 psig

PG7B Pressure, Condensate Collection 0 to 5 0 to -15 2 60* T/M GSE SL/I G/l *Required during checkout and manual

Tank, Secondary psig vacuum inflight operation. Outputs of cond.
cont.

PKG7B-1 Condensate Collection Tank 0 or 28 Open on fall 2 60* T/M GSE SL/I G/I

Control Pressures, Primary @ -5.0 + 2

psig, close
on rise @

-3.0 +0_ psig



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Pressure Original Date Revised

Measurement Measurement Name Range Sample Hand- Vehicle Ground Caution/
No. VDC Pressure Rate ling Display Display WarningNo. VDC ' Pressure

PKG7B-2 Condensate Collection Tank High 0 or 28 Open on fall 2 T/M GSE SL/I G/I
Pressure Caution, Primary +0@-1 psig

Close on
rise @

+.2
-0 psig

PA9A Pressure, Cabin Total, Primary 0 or 28 0 to 17 psia 60 T/M GSE SH/C G/C Primary Redline PE, output of atmos.
SL/C cont.

PKA9A-I Overpress Warning, Cabin Total 0 or 28 on> 15 +1 60 T/M GSE W "W" on SH, SL, GND, output of
Press, Primary psia atmos. cont.

PKA9A-2 Pressure Decay Warning, Cabin 0 or 28 Close for 60 T/M GSE W
Total Press, Primary pressure

decay rate
> TBD
psi/min

PKA9A-3 Total Cabin Press, Inhibit Signal 0 or 28 Open on 2 T/M GSE G/I Output of atmos. cont., input to
to Cond. Cont., Primary rise @ cond. cont.

+0
14 -.2 psia,
Close on fall

@ 10-0
psia

PA9B Pressure, Cabin Total, Secondary 0 to 5 0 to 17 psia 60 T/M GSE SH/I SL/I G/I Backup Redline for PA9A, output
atmos. cont.

PKA9B- Overpress Warning, Cabin Total 0 or 28 on > 15+1 60 T/M GSE W "W" on GND consoles, output of
Press, Primary psia atmos. cont.



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Pressure Original Date Revised

Range Sample Hand- Vehicle Ground Caution/ Remarks
Measurement Measurement Name Rate ling Display Display Warning

No. VDC Pressure

PKA9B-2 Pressure Decay Warning, Cabin 0 or 28 Close for 60 T/M GSE W
Total Press, Secondary pressure

decay rate
>TBD
psi/min

PKA9B-3 Total Cabin Press Inhibit Signal 0 or 28 Open on 2 T/M GSE G/I Output of atmos cont. input to cond.

to Cond Cont, Secondary rise @ cont.

14+014 2 psia

Close on fall

-@ 02 psia

PAIOA Pressure, Reference gas bottle, 0 to 5 0 to 3500 2 60* T/M GSE SL/I G/I Primary Redline

Primary psia *Rqd checkout and launch.

PAIOB Pressure, Reference Gas Bottle, 0 to 5 0 to 3500 2 60* T/M GSE G/I Backup Redline for PG 10A

Secondary psia *Rqd checkout and prelaunch.

PAl IA Pressure Outlet ofO 2 Regulator, 0 to 5 0 to 150 psia 2 60* T/M GSE SH/I SL/I G/I Primary Redline

Primary *Rqd checkout, launch.

PKAI IA 02 Supply Interval Timer Start 0 or 28 Close on 2 60* T/M GSE G/I *Rqd checkout, launch.

Press, Primary rise, open on
fall @ 100
+ 5 psia

PA I B Pressure, Outlet of 02 Regulator, 0 to 5 0 to 150 psia 2 60* T/M GSE G/I Backup Redline for PA 1IA; *Rqd
Secondary checkout, launch.

PKA 11B 02 Supply Interval Timer Start 0 or 28 Close on 2 60* T/M GSE G/I *Rqd checkout, launch.

Press, Secondary rise, open on

- 5 psia



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Pressure Original Date Revised

Measurement Measurement Name Range Sample Hand- Vehicle Ground Caution/ Remarks
No. VDC Pressure Rate ling Display Display Warning

VDC Pressure

PAI2A Pressure, Outlet of N2 Regulator, 0 to 5 0 to 180 2 60* T/M GSE SH/I SL/I G/I Redline, *Rqd checkout, launch,
Primary psia

PAI2B Pressure, Outlet of N2 Regulator, 0 to 5 0 to 180 2 60* T/M GSE G/I Backup Redline for PA I 2A;
Secondary psia *Rqd checkout, launch,

PKA 13 Pressure, 02 Cryo Tank No. 1 0 or 28 Open on rise 2 60* T/M GSE G/1 *Rqd for fill and drain.
Press Sw @ 935 psia Output of 02 Tank cont.

max. Close
on fall @
865 psia min

PA14 Pressure, 0 2 Cryo Tank No. 1 0 to 5 50 to 1050 2 60* T/M GSE SL/I G/I W@ Output of 02 Tank Cont. Possible
psia > 1000 Redline. *Rqd for fill and drain.

psia "W" on SH, SL, Gnd consoles.

PKAI5 Pressure, 0, Cryo Tank No. 2 0 or 28 Open on rise 2 60* T/M GSE G/1I *Rqd for fill and drain
Press Sw @ 935 psia Output of 0 2 Tank cont.

max. Close
on fall @
865 psia min

PA16 Pressure, 02 Cryo Tank No. 2 0 to 5 50 to 1050 2 60* T/M GSE SL/l G/1 W @ Possible Redline. *Rqd for fill, drain,
psia > 1000 launch, Output of 0 2 Tank cont.

psia "W" on SH, SL, GND consoles.

P17,P18, N/A
P19, P20

PKA21 Pressure, H2 Cryo Tank No. 1 0 or 28 Open on rise 2 60* T/M GSE G/1 *Rqd for fill, drain, Output of H2Press Sw @ 260 psia Tank Cont.
max. Close
on fall @
230 psia min



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Pressure Original Date Revised

Range Sample Hand- Vehicle Ground Caution/Measurement Measurement Name Rate ling Display Display Warning Remarks
No. VDC Pressure Rate ling Display Display WarningNo. VDC Pressure

PA22 Pressure, H2 Cryo Tank No. 1 0 to 5 0 to 350 2 60* T/M GSE SL/I G/I W @ Output of H2 Tank cont, Possible
psia > 270 Redline, *Rqd for fill, drain, launch.

psia "W" on SH, SL, GND consoles.

PKA23 Pressure, H2 Cryo Tank No. 2 0 or 28 Open on rise 2 60* T/M GSE G/1 . *Rqd for fill drain, output of H2
Press Sw @ 260 psia Tank Cont.

max. Close
on fall @
230 psia min

PA24 Pressure, H2 Cryo Tank No. 2 0 to 5 0 to 350 2 60* T/M GSE SL/I G/I W @ Output of H2 Tank Cont. Possible
psia > 270 Redline, *Rqd fill, drain, launch.

psia "W" on SH, SL, GND consoles.

PKA25 Pressure, H, Cryo Tank No. 3 0 or 28 Open on rise 2 60* T/M GSE G/I *Rqd for fill, drain, output of H2
Press Sw @ 260 psia . Tank Cont.

max. Close
on fall @
230 psia min

PA26 Pressure, H, Cryo Tank No. 3 0 to 5 0 to 350 2 60* T/M GSE SL/I G/l W @ Output of H2 Tank Cont. Possible
psia > 270 Redline. *Rqd fill, drain, launch.

psia "W" on SH. SL, GND consoles.

P27, P28, N/A
P29, P30

PA31A Pressure, GN 2 Bottle No. 1 0 to 5 0 to 3500 2 60* T/M GSE SL/1 G/I Redline.

Lab Atmosphere, Primary psia *Rqd fill, drain, launch.

PA31B Pressure, GN2 Bottle No. 1 0 to 5 0 to 3500 2 60* T/M GSE G/I Backup Redline for PA3IA.

Lab Atmosphere, Secondary psia *Rqd fill, drain, launch.

PA32A Pressure, GN 2 Bottle No. 2 0 to 5 0 to 3500 2 60* T/M GSE G/I Redline.

Lab Atmosphere, Primary psia *Rqd fill, drain, launch.



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Pressure Original Date , Revised

Range Sample Hand- Vehicle Ground Caution/Measurement Measurement Name Rate ling Display Display Warning Remarks
No. VDC Pressure Rate ling Display Display Warning

o. VDC Pressure

PA32B Pressure, GN 2 Bottle No. 2, 0 to 5 0 to 3500 2 60* T/M GSE G/I. Backup Redline for PA32A.

*Lab Atmosphere, Secondary psia *Rqd fill, drain, launch

P33, P34,
P35, P36, N/A
P37

AP38 AP, Bellows AP of H20 Stowage 0 to 5 - 7.0 psid 2 60* T/M GSE SL/1 G/I Output of water cont. *Rqd during
Tank M86 tank fill and drain on ground.

AP reads +psid when H20 side press is

higher than GN 2 side.

APK38-1 Tank Empty Indicator of H,O0 0 or 28 Close on 2 60* T/M GSE C "C" displayed on SH, SL, GND consoles.
Stowage Tank M86 - decr @ Control input to water controller.

-3.5 +.5 psid *Rqd during tank fill, drain.
-0 Output of water cont.

Open on
rise @

-2.0-2.0 _5 psid

APK38-2 Tank full Indicator of H2 0 0 or 28 Close on 2 60* T/M GSE C "C" displayed on SH. SL, GND consoles.
Stowage Tank M86 rise @ Control input to water controller.

3.0 +0 psid, *Rqd during tank fill, drain.
-.5 psiOutput of Water Cont.

Open on
decr @

1.55 psid

PA39A Pressure, Partial CO 2 , Primary 0 to 5 0 to TBD 60 T/M GSE SH/C G/C PE
mm SL/C

PKA39A High Partial CO 2 Pressure Warning 0 or 28 on > TBD 6 T/M GSE W "W" displayed on SH, SL, GND
Primary mm consoles for high CO2 .



ECS MEASUREMENT LIST

Vehicle Sortie Lab Parameter Pressure Original Date Revised

Measurement Measurement Name Range Sample Hand- Vehicle Ground Caution/
No. Measurement Name Rate ling Display Display Warning

No. VDC Pressure

PA39B Pressure, Partial CO 2 , Secondary 0 to 5 0 to TBD 60 T/M GSE SH/I SL/I G/l
mm

PKA39B High Partial CO2 Pressure Warning, 0 or 28 on > TBD 6 T/M GSE W "W" displayed on GND consoles for
Secondary mm high CO2 *

PA40-1 Pressure, Partial 02, Sensor/ 0 to 5 0 to 6.4 psi 60 T/M GSE SH/C G/C Derived from T/M output of 02 sens/

amplifier No. 1, T/M 02 amp no. 1. All outputs dead w/o K92.
PE

PA40-2 Pressure, Partial 0 2 , Sensor/ N/A N/A SL/C Derived from 0-5 VDC meter output of

amplifier No. 1, Meter Panel 02 sens/amp no. 1.
Meter

PKA40-1 Output from PPO2 Cont. No. I 0 or 28 on < TBD 2 60* T/M GSE G/1 Derived from 0-5 VDC control output of
to Atm Cont. psi 0 2  sens/amp no. 1. *Rqd for checkout.

PKA40-2 No. 1 High PPO2 Warning 0 or 28 on > TBD 2 60* T/M W Derived from 0-5 VDC C&W output of
psi 02 sens/amp no. 1. *Rqd for checkout.

PKA40-3 No. I Low PP02 Caution 0 or 28 on < TBD 2 60* T/M C "C&W" displayed on SH, SL, GND
psi 0 2  consoles.

PA41-1 Pressure, Partial 01, Sensor/ 0 to 5 0 to 6.4 60 T/M GSE SH/I G/I Derived from T/M output of 02 sens/

Amplifier No. 2, T/M psi 02 amp no. 2. All outputs dead w/o K94.

PA41-2 Pressure, Partial 0 2 , Sensor/ N/A N/A N/A SL/C Derived from 0-5 VDC meter output of

Amplifier No. 2, Meter Panel 02 Sens/amp No. 2.
Meter

PKA41-1 Output from PP 02 Cont. No. 2 to 0 or 28 on < TBD 2 60* T/M GSE G/I Derived from 0-5 VDC control output or
Atm Cont. psi 02 sens/amp no. 2. *Rqd for checkout.

PKA41-2 No. 2 High PP 02 Warning 0 or 28 on > TBD 2 60* T/M W Derived from 0-5 VDC C&W output of
psi 02 no. 2. *Rqd for checkout. "C&W"

displayed on SH, SL, GND consoles.
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No. VDC Pressure Rate ling Display Display Warning
No. VDC Pressure

PKA41-3 No. 2 Low PPO2 Caution 0 or 28 on < TBD 2 60* T/M C Derived from 0-5 VDC C&W output of
psi 0 2  sens/amp no. 2. *Rqd for checkout.

"C&W" displayed on SH, SL, GND
consoles.

PA42-1 Pressure, Partial 02, Sensor/ 0-5 0 to 6.4 60 T/M GSE SH/1 G/I Derived from T/M output of 02 sens/

Amplifier No. 3, T/M psi 02 amp No. 3. All outputs dead W/O K96.

PA42-2 Pressure, Partial 02, Sensor/ N/A N/A SL/C Derived from 0-5 VDC meter output of

Amplifier No. 3, Meter 02 sens/amp No. 3.

PKA42-1 Output from PPO2 Cont. No. 3 0 or 28 on < TBD 2 60* T/M GSE G/I Derived from 0-5 VDC control output of
to Atm Cont. psi 02 sens/amp No. 3. *Rqd for checkout.

PKA42-2 No. 3 High PPO2 Warning 0 or 28 on > TBD 2 60* T/M W Derived from 0-5 VDC C&W output of
psi 02 sens/amp No. 3. *Rqd for checkout.

"C&W" dispayed on SH, SL, GND
consoles.

PKA42-3 No. 3 Low PPO2 Caution 0 or 28 on < TBD 2 60* T/M C
psi 0,
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Measurement Measurement Name Range Sample Hand- Vehicle Ground Caution/
No. VDC Flow Rate ling Display Display Warning

F IA Cabin Fan Flow Switch, Primary 0 or 28 on > TBD 2 T/M GSE SH/1 G/I W Poss Redline. Control input to cabin
CFM temp cont "A". "W" on SH, SL, GND

consoles PE. Output of cabin temp cont.

FIB Cabin Fan Flow Switch, Secondary 0 or 28 on > TBD 2 T/M GSE G/I Control intput to cabin temp controller
CFM "B" Switch output from cabin temp

cont.

F2 Equipment Fan Flow Switch 0 or 28 on > TBD 2 T/M GSE W Possible Redline. "W" displayed on
CFM SH, SL, GND consoles.

F3 CO 2 /Humidity Fan M 170 Flow 0 or 28 on > TBD 2 T/M GSE G/1 Possible Redline

Switch CFM

F4 CO 2 /Humidity Fan M 171 Flow 0 or 28 on > TBD 2 T/M GSE G/I Possible Redline

Switch CFM

F5 Bubble Detector Flow Sensor, M 14 0 or 28 on > TBD 2 T/M GSE C "C" displayed on SL, GND consoles.
M148 counts/hr

F6 Bubble Detector Flow Sensor, 0 or 28 on > TBD 2 T/M GSE C "C" displayed on SL, GND consoles.
M147 counts/hr

_ _ _ _ _ _ _ --- I ___ __
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No. VDC % (lb/f 3 ) Rate ling Display Display Warning

Ll Quantity, Fluid Density, 02 Tank 0 to 5 0 to 100 2 120* T/M GSE SL/I G/I Possible Redline. *Rqd for fill, drain,
No. 1 (1.39 to output from 02 tank cont.

69.5)

L2 Quantity, Fluid Density, 02 Tank 0 to 5 0 to 100 2 120* T/M GSE SL/I G/I Possible Redline. *Rqd fill, drain, output
No. 2 (1.39 to from 02 tank cont.

69.5)

L3

L4

L5 Quantity, Fluid Density, H2 Tank 0 to 5 0 to 100 2 120* TIM GSE SL/I G/I Possible Redline. *Rqd fill, drain, output
No. 1 (0.17 to of H2 Tank cont.

4.31)

L6 Quantity, Fluid Density, H2 Tank 0 to 5 0 to 100 2 120* T/M GSE SL/I G/I - Possible Redline. *Rqd fill, drain, output
No. 2 (0.17 to of H2 Tank cont.

4.31)

L7 Quantity, Fluid Density, H2 Tank 0 to 5 0 to 100 2 120* T/M GSE SL/I G/I- Possible Redline. *Rqd fill, drain, output
No. 3 (0.17 to of H2 Tank cont..

4.31)

to
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Measurment Measurement Name Range Sample Hand- Vehicle Ground Caution/
No. VDC Rate ling Display Display Warning

GI Water Controller, Water Dump 0 or 28 2 T/M GSE SH/I SL/I G/I Output of water controller. Occurs with
-Function: NORM DUMP, H1120 K3 signal input to controller.

G2 Water Controller, Water Dump 0 or 28 60 T/M GSE W "W" displayed on SH, SL, GND consoles.
Function: FORCED DUMP, H20 Output of water cont. occurs with

APK3-2 event.

G3

G4 Water Controller, Water Use - 0 or 28 2 T/M GSE G/I Output of water controller.
Function: H20O IN USE

G5 Water Controller, Water Use 0 or 28 2 T/M GSE C "C" displayed on SL, GND consoles.
Function: H,,O USE INHIBITED Output of water controller, input to

sublimator controller occurs with
APK3-1.

G6 Sublimator Controller, Water 0 or 28 60 T/M R G/I "R" is tocount the number of openings
Feed Function: SUBL H20 GSE of valve M91. Output of sublimator

VALVE OPEN controller.

G7 Sublimator Controller. Water 0 or 28 60 T/M GSE G/I Output of Sublimator controller.
Feed Function: SUBL H20

VALVE CLOSED

G8 CabitiTemp Cont, Selector Valve 0 or 28 2 T/M GSE G/I Output of Cabin Temp Cont.
Position: CABIN CONT POS A

G9 Cabin Temp Cont, Selector Valve 0 or 28 2 T/M GSE G/I Output of Cabin Temp Cont.
Position: CABIN CONT POS B

GIO

GIl
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No. MeasurementVDC Rate ling Display Display Warning

G12

G13

G14 Condensate Cont. Col. Tank Evac. 0 or 28 10 T/M R SL/l G/I Output of Cond Cont. occurs with
Valves Positions: COND COL GSE PKG7A or PKG7B. "R" counts valve

EVAC VALVE cycles for quantity est.
OPEN

G15 Condensate Cont., Col. Tank Evac. 0 or 28 10 T/M GSE G/I Output of cond. cont. not present when
Valves Positions: COND COL EVAC G14 is occurring.

VALVE CLOSED

G 16 Condensate Cont., Launch Valve 0 or 28 10 T/M GSE SL/I G/I Redline
Positoin: COND LAUNCH V

CLOSED

G17 Condensate Cont., Launch Valve 0 or 28 10 T/M GSE G/I Backup Redline for G16.
Position: COND LAUNCH V

OPEN

G18

G19

G20 Condensate Cont., Cond Hx Bypass 0 or 28 2 T/M GSE G/I Output of cond. cont. Bypass occurs
Valve-position: COND HX BYPASS when dewpoint drops below min

acceptable level derived from T33A or
T33B

G21 Condensate Cont., Cond Hx Bypass 0 or 28 2 T/M GSE G/I Output of cond. cont. Not present when
Valve Position: COND HX NORM G20 is occurring.

G22 Condensate Cont., Cond. Dump 0 or 28 10 T/M GSE SH/I SL/I G/I C Output of cond. cont. occurs with K33.
Valves Position: COND DUMP "C" on SH, SL, GND consoles. Backup

VALVES ON Redline for G23.

-a___ ____ ______
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Range Sample Hand- Vehicle Ground Caution/Measurement Measurement Name Rate ling Display Display Warning Remarks
No. VDC Rate ling Display Display Warning

G23 Condensate Cont., Cond. Dump 0 or 28 10 T/M GSE G/I Output of cond. cont. Not present when
.Valves Position: COND DUMP G22 is occurring. Redline.

VALVES OFF

G24 Atm Cont., Cabin Depress Valves 0 or 28 10 T/M GSE W Output of atm. cont. "W" on SH, SL,
Position: CABIN DEPRESS GND consoles, Backup RL to G32.

VALVE OPEN

G25

G26

G27

G28 Atm Cont., 02 Supply Valves 0 or 28 2 T/M GSE SH/I SL/I G/I Output of atm cont. Backup redline to

Position: 02 SUPPLY VALVE G29

OPEN

G29 Atm Cont., 02 Supply Valves 0 or 28 2 T/M GSE Output of atm cont. Redline.

Position: 02 SUPPLY VALVE

CLOSED

G30 Atm Cont., N 2 Supply Valves 0 or 28 2 T/M GSE SH/1 SL/I G/I Output of atm. cont. Backup Redline

Position: N2 SUPPLY VALVE to G31

OPEN

G31 Atm Cont., N2 Supply Valves 0 or 28 2 T/M GSE G/I Output of atm cont. Redline

Position: N2 SUPPLY VALVE

CLOSED

G32 Atm Cont., Cabin Depress Valves 0 or 28 10 T/M GSE G/I Output of atm. cont. Redline

Position: CABIN DEPRESS
VALVE CLOSED
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Measurement Measurement Name Range Sample Hand- Vehicle Ground Caution/
No. DMeasurementC Rate ling Display Display Warning

G33 Atm Cont., O2 /N2 Selector Valve 0 or 28 2 T/M GSE SH/1 SL/l G/I Output of Atm Cont.

Position: SELECTOR VALVE
02 POS

G34 Atm Cont., 0 2 /N2 Selector Valve 0 or 28 2 T/M GSE G/I Output of Atm. Cont.

Position: SELECTOR VALVE,
N2 POS

G35 Rad Cont, TMV Flow Path Sel 0 or 28 2 T/M GSE SL/I G/I Output of Rad Cont. Redline
Valve Position: PRIMARY TMV
(M9)

G36 Rad Cont, TMV Flow Path Sel 0 or 28 2 T/M GSE SL/i G/I C Output of Rad Cont. Backup Redline
Valve Position: SECONDARY to G35."C" on SH, SL, GND consoles.
TMV (M 14)

G37, G38

G39

G40
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Range Sample Hand- Vehicle Ground Caution/ Remarks
Measurement Measurement Name Rate ling Display Display Warning

No. VDC

KI Water Controller, Source Select 0 or 28 2 T/M G/I. Output of water controller.

SW Position: INTERNAL

K2 Water Controller, Source Select 0 or 28 2 T/M GSE SH/I G/I Output of water controller. Redline

SW Position: EXTERNAL

K3 Water Controller, Water Dump 0 or 28 2 T/M GSE SH/I SL/C G/1 Output of water cont. Backup Redline

SW Position: H20 DUMP ON for K4

K4 Water Controller, Water Dump SW 0 or 28 2 T/M GSE G/I Output of water controller. Redlihe

Position: H20 DUMP OFF

K5 Water Controller, Power SW 0 or 28 2 T/M GSE SH/I SL/I G/1 Output of water cont. Backup Redline

Position: H20 CONT ON for K6

K6 Water Controller, Power SW 0 or 28 2 T/M GSE G/I - . Output of water controller. Redline

Position: H2 0 CONT OFF

K7 Sublimator Controller, Source Sel. 0 or 28 2 T/M G/I Output of sublimator controller.

SW Position: INTERNAL

K8 Sublimator Controller, Source 0 or 28 2 T/M GSE SH/I G/I Output of sublimator controller.

SW Position: EXTERNAL Redline

K9 Sublimator Controller, Power SW 0 or 28 2 T/M GSE SH/I SL/C G/I Output of subl cont. Backup Redline

Position: SUBL ON for K10

KI0 Sublimator Controller, Power SW 0 or 28 2 T/M GSE G/I Output of sublimator controller.

Position: SUBL OFF Redline

KI 1 Cabin Temp Cont, Source Select 0 or 28 2 T/M G/I Output of cabin temp cont.

SW Position: INTERNAL

K12 Cabin Temp Cont, Source Select Oor 28 2 T/M GSE SH/I G/I Output of cabin temp cont. Redline

SW Position: EXTERNAL
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K13 Cabin Temp Cont, Power SWS 0 or 28 2 T/M GSE SL/I G/I Output of cabin temp cont. Redline
Position: CABIN CONT A ON

K14 Cabin Temp Cont, Power SWS 0 of 28 2 T/M GSE SL/I G/I Output of cabin temp cont. Backup
Position: CABIN CONT A OFF Redline for K13.

K15 Cabin Temp Cont Power SWS 0 or 28 2 T/M GSE SL/I G/I Output of cabin temp cont. Alternate
Position: CABIN CONT B ON redline to K13

K16 Cabin Temp Cont Power SWS 0 or 28 2 T/M GSE SL/I G/I Output of cabin temp cont. Backop
Position: CABIN CONT B OFF redline to K15

KI 7 Cabin Temp Cont. Heater Pwr 0 or 28 2 T/M GSE SL/C G/I Output of cabin temp cont. Backup
SW: CABIN HTR AUTO Redline to K18

K 18 Cabin Temp Cont Heater Pwr 0 or 28 2 T/M GSE G/I Output of cabin temp cont. Redline
SW: CABIN HTR INHIBIT

K19 Cabin Temp Cont Heater Element: 0 or 28 2 T/M GSE SL/C G/I Output of cabin temp cont.
CABIN HTR ON

K20 Cabin Temp Cont Heater Element: 0 or 28 2 T/M GSE G/I Output of cabin temp cont.
CABIN HTR OFF

K21

K22

K23

K24

K25

K26

ND
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K27 Condensate Cont Source Sel SW 0 or 28 2 T/M G/ Output of condensate cont.
.Position: INTERNAL

K28 Condensate Cont Source Sel SW 0 or 28 2 T/M GSE SH/I G/I Output of condensate cont. Redline
Position: EXTERNAL

K29 Condenstae Cont, Power SWS 0 or 28 2 T/M GSE SL/I G/I Output of cond cont. Redline
Position: COND CONT A ON

K30 Condensate Cont, Power SWS 0 or 28 2 T/M GSE SL/I G/I Output of cond cont. Backup Redline
Position: COND CONT A OFF to K29

K31 Condensate Cont, Power SWS 0 or 28 2 T/M GSE SL/I G/I Output of cond cont. Alternate Redline
Position: COND CONT B ON to K29

K32 Condensate Cont, Power SWS 0 or 28 2 T/M GSE SL/I G/I Output of cond cont. Backup Redline
Position: COND CONT B OFF to K31

K33 Condensate Cont, Dump SW 0 or 28 2 T/M GSE SL/C G/I Output of cond cont for any dump
Position: COND DUMP INITIATE event.

K34 Condensate Cont, Flow Sensors 0 or 28 2 T/M GSE SL/I G/I Output of cond cont.
Status: ON

K35 Condensate Cont, Flow Sensors 0 or 28 2 T/M GSE SL/I G/I Output of cond cont.
Status: OFF

K36

K37

K38 Condensate Cont, Press Launch SW 0 or 28 2 T/M GSE SH/I SL/C G/I Output of cond cont and a function of
Position: COND FLOW INHIBIT cabin dewpoint.

K39 Condensate Cont, Press Launch 0 or 28 2 T/M GSE G/I Output of cond cont and a function of
SW Position: COND FLOW NORM cabin dewpoint.
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K40 02 Cont, Source Select SW 0 or 28 2 T/M G/i Output of 02 cont.

'Position: INTERNAL

K41 02 Cont, Source Select SW 0 or 28 2 T/M GSE SH/I G/1 Output of 02 cont. Redline

Position: EXTERNAL

K42 02 Cont, Tank No. 1 Subcont SW 0 or 28 2 T/M GSE SL/1 G/I Output of 02 cont.

Position: 02 TANK NO. 1 ON

K43 02 Cont, Tank No. 1 Subcont SW 0 or 28 2 T/M GSE G/1 Output of 02 cont.

Position: 0 2 TANK NO. 1 OFF

K44 0 2 OCont, Tank No. 2 Subcont Sw 0 or 28 2 T/M GSE SL/I G/I Output of 02 cont.

Position: 02 TANK NO. 2 ON

K45 02 Cont, Tank No. 2 Subcont SW 0 or 28 2 T/M GSE G/I Output of 02 Cont.

Position: 02 TANK NO. 2 OFF

K46 02 Cont, Tank No. 1 Heater Pwr: 0 or 28 6 60* T/M GSE G/I *Rqd during fill/drain.

02 TANK NO. 1 HTR ON Output of 02 cont.

K47 02 Cont, Tank No. 1 Heater Pwr: 0 or 28 6 60* T/M GSE G/I *Rqd during fill/drain.

0 2 TANK NO. I HTR OFF Output of 02 cont.

K48 02 Cont, Tank No. 2 Heater Pwr: 0 or 28 6 60* T/M GSE G/I *Rqd during fill/drain.

02 TANK N0. 2 HTR ON Output of 02 cont.

K49 02 Cont, Tank No. 2 Heater Pwr: 0 or 28 6 60* T/M GSE G/1 *Rqd during fill/drain.

02 TANK NO. 2 HTR OFF Output of O2 cont.

to ____________________________ 

______________ 
___________ 

___________ 

___________ 

______________________________________________
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K50 02 Cont, Density Bypass SW 0 or 28 2 T/M GSE SL/ G/l. Output of 02 cont.

Position: 02 DENSITY COMP ON

K51 02 Cont, Density Bypass SW 0 or 28 2 T/M GSE G/I Output of 02 cont.

Position: 02 DENSITY COMP OFF

K52 H2 Cont, Source Select SW 0 or 28 2 T/M G/I Output of H2 cont.

Position: INTERNAL

K53 H2 cont, Source Select SW 0 or 28 2 T/M GSE SH/I G/I Output of H2 cont. Redline

Position: EXTERNAL

K54 H2 Cont, Tank No. 2 Subcont SW 0 or 28 2 T/M GSE SL/1 G/I Output of H2 cont.

Position: H2 TANK NO. 1 ON

K55 H2 Cont, Tank No. 1 Subcont SW 0 or 28 2 T/M GSE G/I Output of H2 cont.

Position: H2 TANK NO. 1 OFF

K56 H2 Cont, Tank No. 2 Subcont SW 0 or 28 2 T/M GSE SL/I G/I Output of H2 cont.

Position: H2 TANK NO. 2 ON

K57 H 2 cont, Tank No. 2 Subcont SW 0 or 28 2 T/M GSE G/I Output of H2 cont.

Positon: H2 TANK NO. 2 OFF

K58 H2 Cont, Tank No. 3 Subcont SW 0 or 28 2 T/M GSE SL/I G/I Output of H2 cont.

Position: H2 TANK NO. 3 ON

K59 H2 Cont, Tank No. 3 Subcont SW 0 or 28 2 T/M GSE G/I Output of H2 cont.

Position: H2 TANK NO. 3 OFF
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K60

K61

K62

K63

K64 H2 Cont, Density Bypass SW 0 or 28 2 T/M GSE SL/I G/l Output of H2 cont.

Position: H2 DENSITY COMP ON

K65 H2 Cont, Density Bypass SW 0 or 28 2 T/M GSE G/I Output of H2 cont.

Position: H2 DENSITY COMP

OFF

K66 H2 Cont, Tank No. I Fan Power: 0 or 28 2 T/M GSE SL/I G/I Output of H2 cont.

H2 TANK NO. I FAN ON

K67 H2 Cont, Tank No. 1 Fan Power: 0 or 28 2 T/M GSE G/i Output of H2 cont.

H2 TANK NO. 1 FAN OFF

K68 H2 Cont, Tank No. 2 Fan Power: 0 or 28 2 T/M GSE SL/1 G/I Output of H2 cont.

H2 TANK NO. 2 FAN ON

K69 H2 Cont, Tank No. 2 Fan Power: 0 or 28 2 T/M GSE G/1 Output of H2 cont.

H2 TANK NO. 2 FAN OFF

K70 H2 Cont, Tank No. 3 Fan Power: 0 or 28 2 T/M GSE SL/I G/I Output of H2 cont.

H2 TANK NO. 3 FAN ON

C4_¢.o I
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K71 H2 Cont, Tank No. 3, Fan Power: 0 or 28 2 T/M GSE G/I Output of H2 cont.

H2 TANK NO. 3 FAN OFF

K72

K73

K74

K75

K76 H2 Cont, Tank No. 1 Heater Pwr: 0 or 28 6 60* T/M GSE G/I *Rqd during fill/drain.
H2 TANK NO. 1 HTR ON Output of H2 cont.

K77 H2 Cont Tank No. 1 Heater Pwr: 0 or 28 6 60* T/M GSE G/I *Rqd during fill/drain.
H2 TANK NO. 1 HTR OFF Output of H2 cont.

K78 H2 Cont Tank No. 2 Heater Pwr: 0 or 28 6 60* T/M GSE G/1 *Rqd during fill/drain.
H2 TANK NO. 2 HTR ON Output of H2 cont.

K79 H2 Cont Tank No. 2 Heater Pwr: 0 or 28 6 60* T/M GSE G/I *Rqd during fill/drain.
H2 TANK NO. 2 HTR OFF Output of H2 cont.

K80 H2 Cont Tank No. 3 Heater Pwr: 0 or 28 6 60* T/M GSE G/I *Rqd during fill/drain.
H2 TANK NO. 3 HTR ON Output of H2 cont.

K81 H2 Cont Tank No. 3 Heater Pwr: 0 or 28 6 60* T/M GSE G/I *Rqd during fill/drain.
H2 TANK NO. 3 HTR OFF Output of H2 cont.

K82
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K83

K84

K85

K86 Atm Cont, Source Sel SW 0 or 28 2 T/M G/I Output of atm cont.
Position: INTERNAL

K87 Atm Cont, Source Sel SW 0 or 28 2. T/M GSE S/I G/l Output of atm cont. Redline
Position: EXTERNAL

K88 Atm Cont, Pwr SWS Position: 0 or 28 2 T/M GSE SL/I G/I Output of atm cont. Redline
ATM CONT A ON

K89 Atm Cont, Pwr SWS Position: 0 or 28 2 T/M GSE SL/I G/I Output of atm cont. Backup redline for
ATM CONT A OFF K88

K90 Atm Cont, Pwr SWS Position: 0 or 28 2 T/M GSE SL/1 G/I Output of atm cont. Alternative redline
ATM CONT B ON for K88

K91 Atm Cont, Pwr SWS Position: 0 or 28 2 T/M GSE SL/I G/I Output of atm cont. Backup redline for
ATM CONT B OFF K90

K92 Atm Cont, PPO2 SWS Position: 0 or 28 2 T/M GSE SL/I G/I Output of atm cont. Redline
PPO2 SENS& CONT NO. 1 OFF

K93 Atm Cont, PPO2 SWS Position: 0 or 28 2 T/M GSE G/I Output of atm cont. Backup Redline for
PPO2 SENS & CONT NO. 1 OFF K92

K94 Atm Cont, PPO2 SWS Position: 0 or 28 2 T/M GSE SL/1 G/1 Output of atm cont. Redline
PPO2 SENS & CONT NO. 2 ON

K95 Atm Cont, PPO2 SWS Position: 0 or 28 2 T/M GSE G/I Output of Atm cont. Backup Redline for
PPO2 SENS & CONT NO. 2 OFF K94
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K96 Atm Cont, PPO2 SWS Position: 0 or 28 2 T/M GSE SL/I G/1 Output of Atm cont. Alternative

-PPO2 SENS & CONT NO. 3 ON Redline for K92 and K94

K97 Atm Cont, PPO2 SWS Position: 0 or 28 2 T/M GSE G/I Output of atm cont. Backup Redline for

PPO2 SENS / CONT NO. 3 OFF K96

K98 Atms Cont,PPO2 Cont Mode SW: 0 or 28 2 T/M GSE Visual SW G/I C Output of atm cont. "C" at absence of

PPO2 CONT NO. 1 USE Pos in SL K92. "C" Redline, on SH, SL, GND
console.

K99 Atms Cont, PPO2 Cont Mode SW: 0 or 28 2 T/M GSE Visual SW G/I C Output of atm cont. "C" at absence of

PPO2 CONT NO. 2 USE Pos in SL K94. "C" is Redline, on SH, SL, GND
console.

Kl00 AtmsCont, PPO2 Cont Mode SW: 0 or 28 2 T/M GSE Visual SW G/I C Output of atm cont. "C" at absence of

PPO2 CONT NO. 3 USE Pos in SL K96. "C" is Redline, on SH, SL, GND
console.

KI01 Atms Cont,PPO2 Cont Mode SW: 0 or 28 2 T/M GSE Visual SW G/1 C Output of atm cont. "C" is Redline on

02 MANUAL ADDITION Pos in SL SH, SL, GND consoles (no launch in
this mode).

K102 Atms Cont, PPO2 Cont mode SW: 0 or 28 2 T/M GSE Visual SW G/I Output of atm cont. Backup Redline to

0 2 FEED OFF Pos in SL K98, K99, K100, K101.

K103 Atms Cont, 02 Supply SW: 02 0 or 28 2 T/M GSE SL/I G/I Output of atm cont. Backup Redline for

SUPPLY ON K 104.

K104 Atms Cont, 02 Supply SW: 02 0 or 28 2 T/M GSE G/l Output of atm cont. Backup Redline for

SUPPLY OFF G29.

K105 Atms Cont, N2 Supply SW: N2  0 or 28 2 T/M GSE SL/I G/l Output of Atm cont. Back up Redline

SUPPLY ON for K106.
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K106 Atms Cont, N2 Supply SW: N2  0 or 28 2 T/M GSE G/I Output of atm cont. Backup Redline for
SUPPLY OFF G31.

K107 Atms Cont, Depress SW: 0 or 28 2 T/M GSE SH/I G/l Output of atm cont. Backup Redline for
LAB DEPRESS ON K108.

K108 Atms Cont, Depress SW: 0 or 28 2 T/M GSE Output of Atm Cont. Backup Redline
LAB DEPRESS OFF for G32.

K109

KI10

Kill

KI 12

K113 Rad Valve Cont Source Select SW 0 or 28 2 T/M G/I Output of radiator cont.
Position: INTERNAL

K114 Rad Valve Cont Source Select SW 0 or 28 2 T/M GSE SH/I G/I Output of radiator cont. Redline
Position: EXTERNAL

K115 Rad Valve Cont Power SWS 0 or 28 2 T/M GSE SL/1 G/I Output of rad cont. Redline
Position: RAD VALVE CONT
ON

K1 16 Rad Valve Cont Power SWS 0 or 28 2 T/M GSE SL/l G/I Output of rad cont. Backup Redline for
Position: RAD VALVE CONT K1I 15
OFF

K117 Rad Valve Cont Flow Direction: 0 or 28 2 T/M GSE SL/I G/l Output of rad cont. Backup Redline
FLOW TO SECONDARY TMV

KI 18 Rad Valve Cont Flow Direction: 0 or 28 2 T/M GSE SL/l G/I Output of rad cont. Backup Redline for
FLOW TO SECONDARY TMV K 117.

W.
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K119 Freon Pump, Source Select SW 0 or 28 2 T/M GSE G/I Output from source switch.
Position: INTERNAL

K120 Freon Pump, Source Select SW 0 or 28 2 T/M GSE SH/I G/I Output from source switch. Redline
Position: EXTERNAL

K121 Pump Power SWS Position: 0 or 28 2 . T/M GSE SH/I SL/I G/I Output from pwr relay. Redline
PRIMARY R21 PUMP ON

K122 Pump Power SWS Position: 0 or 28 2 . T/M GSE SH/I SL/I G/I Output from pwr relay. Backup Redline
PRIMARY R21 PUMP OFF to Kl21.

KI 23 Pump Power SWS Position: 0 or 28 2 T/M GSE SH/I SL/I G/I Output from power relay. Alternate
SECONDARY R21 PUMP ON Redline to K121.

K124 Pump Power SWS Position: 0 or 28 2 T/M GSE SH/I SL/ G/I - Output from power relay. Backup
SECONDARY R21 PUMP OFF Redline to K123

K125 Water Pump, Source Select SW 0 or 28 2 T/M G/I Output from source switch.
Position: INTERNAL

K126 Water Pump, Source Select SW 0 or 28 2 T/M GSE SH/I G/I Output from source switch. Redline
Position: EXTERNAL

K127 Pump Power SWS Position: 0 or 28 2 T/M GSE SH/I SL/I G/1 Output from power relay. Redline
PRIMARY H20 PUMP ON

K128 Pump Power SWS Position: 0 or 28 2 T/M GSE SH/I SL/I G/I Output from power relay. Backup
PRIMARY H20 PUMP OFF Redline for K127

K129 Pump Power SWS Position: 0 or 28 2 T/M GSE SH/I SL/1 G/I Output from power relay. Alternate
SECONDARY H20 PUMP ON Redline to K127

K130 Pump Power SWS Position: Oor 28 2 T/M GSE SH/I SL/I G/I Output from power relay. Backup
SECONDARY H20 PUMP OFF Redline for K129
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MI31 Condensate Fans, Source Select SW 0 or 28 2 T/M G/I Output from source switch.
Position: INTERNAL

M132 Condensate Fans Source Select SW 0 or 28 2 T/M GSE SH/I G/1 Output from source switch. Redline
Position: EXTERNAL

M133 Condensate Fan Power SWS 0 or 28 2 T/M GSE SH/I SL/I G/I Output from power relay. Backup
Position: FAN NO. 1 ON (M 170) Redline for M 134

M134 Condensate Fan Power SWS 0 or 28 2 T/M GSE G/I Output from power relay. Redline
Position: FAN NO. 1 OFF (M 170)

M135 Condensate Fan Power SWS 0 or 28 2 T/M GSE SH/I SL/I G/I Output from power relay. Backup
Position: FAN NO. 2 ON (M171) relay for M135.

M 136 Condensate Fan Power SWS 0 or 28 2 T/M GSE G/I Output from power relay. Redline
Position: FAN NO. 2 OFF (M171)

M137 Cabin Fan Source Select SW 0 or 28 2 T/M G/I Output from source switch.
Position: INTERNAL

M138 Cabin Fan Source Select SW 0 or 28 2 T/M GSE SH/I G/l Output from source switch. Redline
Position: EXTERNAL

M139 Cabin Fan Power SW Position: 0 or 28 2 T/M GSE SH/I G/I Output from Power Relay Redline
CABIN FAN ON

M140 Cabin Fan Power SW Position: 0 or 28 2 T/M GSE G/I Output from power relay. Backup
CABIN FAN OFF Redline for M139

M 141 Equipment Fan Source Select SW 0 or 28 2 T/M GSE G/I Output from source switch.
Position: INTERNAL

M 142 Equipment Fan Source Select SW 0 or 28 2 T/M GSE SH/1 G/1 Output from source switch. Redline
Position: EXTERNAL
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M143 Equipment Fan Power SW 0 or 28 2 T/M GSE SH/I G/I Output from power relay. Redline
Position: EQUIPMENT FAN ON

M144 Equipment Fan Power SW 0 or 28 2 T/M GSE G/I Output from power relay. Backup
Position: EQUIPMENT FAN OFF Redline for M 143

M145

M146

M147 Pump Mode SW Position: 0 or 28 2 T/M GSE SH/I G/I Output from Power relay. Backup
R21 PUMP NORMAL Redline for M 148

M148 Pump Mode SW Position: 0 or 28 2 T/M GSE G/I Output from power relay. Redline
R21 PUMP STATION KEEPING



SORTIE LAB ECS/ORBITOR MECHANICAL INTERFACE

(PHASE B BASELINE)

Line
Function Fluid Size Temp Press Flow Rate Remarks

Condensate Dump H20 1/4" AMB +3.0 to + 15.0 psid 650 lb/hr Ground service and/or On-
Orbit operation

H20 Dump H2 0 3/8" AMB 35.0 psid max 1500 lb/hr Same as above

GSE Air Supply & 100 K 2" 65 0 F to 75 0 F 15 psid max 100 cfm Ground service operations
Return (2 Lines) Class air only

GSE Coolant TBD 3/4" TBD TBD TBD Ground service operations

Supply & only
Return (2 Lines)

02 Relief 02 1" -297 0 F to 80oF 1010 psig max 2.6 lb/hr Full flow thru relief valve at
130oF

H2 Relief H2  1/2" -423 0 F to 80oF 285 psig max 6 lb/hr Full flow thru relief valve at
1300F

GN2 Fill and N2  3/8" AMB 3000 psig TBD Ground service operations

Drain only

02 Cryogenic Cryo-0 2  3/4" -297 0 F to 80oF 0 to 983 psig TBD Ground service and prelaunch

Bottle Fill and Fill operations only, 0 psig at fill;
Drain 1.0" 983 psig at drain

vent

H2 Cryogenic Cryo-H2  1/2" -4230 F to 80 0F 0 to 273 psig TBD Ground service and prelaunch

Bottle Fill and Fill operations only, 0 psig at fill;
Drain 1/2" 273 psig at drain

Vent

GN2 Relief N2 1/4" AMB TBD above 3000 psig TBD
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